Department of Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA.
Institute of Food Research, Norwich, United Kingdom.
J Biol Chem. 2021 Oct;297(4):101219. doi: 10.1016/j.jbc.2021.101219. Epub 2021 Sep 21.
Polyamines are fundamental molecules of life, and their deep evolutionary history is reflected in extensive biosynthetic diversification. The polyamines putrescine, agmatine, and cadaverine are produced by pyridoxal 5'-phosphate-dependent L-ornithine, L-arginine, and L-lysine decarboxylases (ODC, ADC, LDC), respectively, from both the alanine racemase (AR) and aspartate aminotransferase (AAT) folds. Two homologous forms of AAT-fold decarboxylase are present in bacteria: an ancestral form and a derived, acid-inducible extended form containing an N-terminal fusion to the receiver-like domain of a bacterial response regulator. Only ADC was known from the ancestral form and limited to the Firmicutes phylum, whereas extended forms of ADC, ODC, and LDC are present in Proteobacteria and Firmicutes. Here, we report the discovery of ancestral form ODC, LDC, and bifunctional O/LDC and extend the phylogenetic diversity of functionally characterized ancestral ADC, ODC, and LDC to include phyla Fusobacteria, Caldiserica, Nitrospirae, and Euryarchaeota. Using purified recombinant enzymes, we show that these ancestral forms have a nascent ability to decarboxylate kinetically less preferred amino acid substrates with low efficiency, and that product inhibition primarily affects preferred substrates. We also note a correlation between the presence of ancestral ODC and ornithine/arginine auxotrophy and link this with a known symbiotic dependence on exogenous ornithine produced by species using the arginine deiminase system. Finally, we show that ADC, ODC, and LDC activities emerged independently, in parallel, in the homologous AAT-fold ancestral and extended forms. The emergence of the same ODC, ADC, and LDC activities in the nonhomologous AR-fold suggests that polyamine biosynthesis may be inevitable.
多胺是生命的基本分子,其广泛的生物合成多样化反映了其深远的进化历史。腐胺、胍丁胺和尸胺分别由吡哆醛 5'-磷酸依赖性 L-鸟氨酸、L-精氨酸和 L-赖氨酸脱羧酶(ODC、ADC、LDC)从丙氨酸消旋酶(AR)和天冬氨酸氨基转移酶(AAT)折叠体中产生。细菌中存在两种同源的 AAT 折叠脱羧酶:一种是祖先形式,另一种是衍生的、酸诱导的扩展形式,其中包含与细菌响应调节剂的受体样结构域的 N 端融合。只有 ADC 来自祖先形式,仅限于厚壁菌门,而扩展形式的 ADC、ODC 和 LDC 存在于变形菌门和厚壁菌门。在这里,我们报告了祖先形式 ODC、LDC 和双功能 O/LDC 的发现,并将功能表征的祖先 ADC、ODC 和 LDC 的系统发育多样性扩展到包括梭菌门、 Caldiserica 门、硝化螺旋菌门和广古菌门。使用纯化的重组酶,我们表明这些祖先形式具有初生的能力,可以在动力学上以低效率脱羧化不太受青睐的氨基酸底物,并且产物抑制主要影响首选底物。我们还注意到,存在祖先 ODC 与鸟氨酸/精氨酸营养缺陷型之间存在相关性,并将其与已知的共生依赖性联系起来,即依赖于使用精氨酸脱氨酶系统的物种产生的外源性鸟氨酸。最后,我们表明,在同源的 AAT 折叠体的祖先和扩展形式中,ADC、ODC 和 LDC 活性独立地、平行地出现。在非同源的 AR 折叠体中出现相同的 ODC、ADC 和 LDC 活性表明多胺生物合成可能是不可避免的。