Suppr超能文献

在亨廷顿病动物模型中,海马神经发生龛内的干细胞静止状态与转化生长因子-β信号的升高有关。

Stem cell quiescence in the hippocampal neurogenic niche is associated with elevated transforming growth factor-beta signaling in an animal model of Huntington disease.

机构信息

Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria.

出版信息

J Neuropathol Exp Neurol. 2010 Jul;69(7):717-28. doi: 10.1097/NEN.0b013e3181e4f733.

Abstract

Cellular proliferation, differentiation, integration, and survival within the adult neural stem cell niche are altered under pathological conditions, but the molecular cues regulating the biology of this niche are mostly unknown. We examined the hippocampal neural stem cell niche in a transgenic rat model of Huntington disease. In this model, progressive cognitive deficits develop at the age of 9 months, suggesting possible hippocampal dysfunction. We found a disease-associated progressive decline in hippocampal progenitor cell proliferation accompanied by an expansion of the pool of 5-bromo-2-deoxyuridine label-retaining Sox-2-positive quiescent stem cells in the transgenic animals. Increments in quiescent stem cells occurred at the expense of cAMP-responsive element-binding protein-mediated neuronal differentiation and survival. Because elevated levels of transforming growth factor-beta1 (TGF-beta1) impair neural progenitor proliferation, we investigated hippocampal TGF-beta signaling and determined that TGF-beta1 induces the neural progenitors to exit the cell cycle. Although phospho-Smad2, an effector of TGF-beta signaling, is normally absent in subgranular stem cells, it accumulated progressively in Sox2/glial fibrillary acidic protein-expressing cells of the subgranular zone in the transgenic rats. These results indicate that alterations in neurogenesis in transgenic Huntington disease rats occur in successive phases that are associated with increasing TGF-beta signaling. Thus, TGF-beta1 signaling seems to be a crucial modulator of neurogenesis in Huntington disease and may represent a target for future therapy.

摘要

在病理条件下,成年神经干细胞龛内的细胞增殖、分化、整合和存活会发生改变,但调节该龛生物学的分子线索在很大程度上尚不清楚。我们在亨廷顿病的转基因大鼠模型中检查了海马神经干细胞龛。在该模型中,9 个月时出现进行性认知缺陷,提示可能存在海马功能障碍。我们发现,与疾病相关的海马祖细胞增殖呈进行性下降,同时转基因动物中 5-溴-2-脱氧尿苷标记保留的 Sox-2 阳性静止干细胞池扩大。静止干细胞的增加是以 cAMP 反应元件结合蛋白介导的神经元分化和存活为代价的。由于转化生长因子-β1(TGF-β1)水平升高会损害神经祖细胞的增殖,我们研究了海马 TGF-β 信号转导,并确定 TGF-β1 诱导神经祖细胞退出细胞周期。尽管磷酸化 Smad2 是 TGF-β 信号转导的效应物,但在亚颗粒区的干细胞中通常不存在,而在转基因大鼠的亚颗粒区的 Sox2/胶质纤维酸性蛋白表达细胞中逐渐积累。这些结果表明,转基因亨廷顿病大鼠的神经发生改变发生在与 TGF-β 信号转导增加相关的连续阶段。因此,TGF-β1 信号似乎是亨廷顿病神经发生的关键调节剂,可能成为未来治疗的靶点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验