Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA.
Photosynth Res. 2010 Jul;105(1):39-49. doi: 10.1007/s11120-010-9562-8. Epub 2010 Jun 10.
To investigate the impact of iron deficiency on bioenergetic pathways in Chlamydomonas, we compared growth rates, iron content, and photosynthetic parameters systematically in acetate versus CO(2)-grown cells. Acetate-grown cells have, predictably (2-fold) greater abundance of respiration components but also, counter-intuitively, more chlorophyll on a per cell basis. We found that phototrophic cells are less impacted by iron deficiency and this correlates with their higher iron content on a per cell basis, suggesting a greater capacity/ability for iron assimilation in this metabolic state. Phototrophic cells maintain both photosynthetic and respiratory function and their associated Fe-containing proteins in conditions where heterotrophic cells lose photosynthetic capacity and have reduced oxygen evolution activity. Maintenance of NPQ capacity might contribute to protection of the photosynthetic apparatus in iron-limited phototrophic cells. Acetate-grown iron-limited cells maintain high growth rates by suppressing photosynthesis but increasing instead respiration. These cells are also able to maintain a reduced plastoquinone pool.
为了研究铁缺乏对衣藻生物能量途径的影响,我们系统比较了在乙酸盐和 CO(2)培养条件下细胞的生长速率、铁含量和光合作用参数。可预测的是,在乙酸盐培养条件下,细胞的呼吸成分含量更高(是 CO(2)培养条件下的两倍),但每细胞的叶绿素含量也更高,这与我们的预期相反。我们发现,在铁缺乏条件下,自养细胞受到的影响较小,这与它们每细胞的铁含量较高有关,这表明它们在这种代谢状态下具有更高的铁吸收能力。在异养细胞丧失光合作用能力和氧释放活性的情况下,自养细胞仍能维持光合作用和呼吸作用及其相关含铁蛋白的功能。NPQ 能力的维持可能有助于保护铁限制的自养细胞中的光合作用器。在铁限制条件下,以乙酸盐为碳源的细胞通过抑制光合作用而不是增加呼吸作用来维持高生长速率。这些细胞还能够维持一个较小的质体醌池。