Suppr超能文献

当将衣藻细胞转移到缺铁培养基中 48 小时内,细胞会经历明显的铁营养阶段转变。

Chlamydomonas cells transition through distinct Fe nutrition stages within 48 h of transfer to Fe-free medium.

机构信息

Department of Plant and Microbial Biology, University of California, Berkeley, CA, 99354, USA.

Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA.

出版信息

Photosynth Res. 2024 Sep;161(3):213-232. doi: 10.1007/s11120-024-01103-8. Epub 2024 Jul 17.

Abstract

Low iron (Fe) bioavailability can limit the biosynthesis of Fe-containing proteins, which are especially abundant in photosynthetic organisms, thus negatively affecting global primary productivity. Understanding cellular coping mechanisms under Fe limitation is therefore of great interest. We surveyed the temporal responses of Chlamydomonas (Chlamydomonas reinhardtii) cells transitioning from an Fe-rich to an Fe-free medium to document their short and long-term adjustments. While slower growth, chlorosis and lower photosynthetic parameters are evident only after one or more days in Fe-free medium, the abundance of some transcripts, such as those for genes encoding transporters and enzymes involved in Fe assimilation, change within minutes, before changes in intracellular Fe content are noticeable, suggestive of a sensitive mechanism for sensing Fe. Promoter reporter constructs indicate a transcriptional component to this immediate primary response. With acetate provided as a source of reduced carbon, transcripts encoding respiratory components are maintained relative to transcripts encoding components of photosynthesis and tetrapyrrole biosynthesis, indicating metabolic prioritization of respiration over photosynthesis. In contrast to the loss of chlorophyll, carotenoid content is maintained under Fe limitation despite a decrease in the transcripts for carotenoid biosynthesis genes, indicating carotenoid stability. These changes occur more slowly, only after the intracellular Fe quota responds, indicating a phased response in Chlamydomonas, involving both primary and secondary responses during acclimation to poor Fe nutrition.

摘要

铁(Fe)生物利用率低会限制含铁蛋白的生物合成,而这些蛋白在光合生物中尤其丰富,从而对全球初级生产力产生负面影响。因此,了解细胞在缺铁条件下的应对机制具有重要意义。我们调查了从富含铁的培养基转换到缺铁培养基的衣藻(Chlamydomonas reinhardtii)细胞的时间响应,以记录其短期和长期的调整。虽然在缺铁培养基中培养 1 或更多天后才会出现生长缓慢、黄化和光合作用参数降低等现象,但一些转录本的丰度,如参与铁吸收的转运蛋白和酶的编码基因的转录本,在细胞内铁含量发生变化之前的几分钟内就发生了变化,这表明存在一种对铁敏感的感应机制。启动子报告构建表明,这种即时的初级响应具有转录成分。在提供乙酸盐作为还原碳源的情况下,与光合作用和四吡咯生物合成相关的编码蛋白的转录本相比,呼吸相关成分的转录本得到维持,这表明呼吸作用优先于光合作用进行代谢。与叶绿素的丧失不同,尽管参与类胡萝卜素生物合成的基因的转录本减少,但类胡萝卜素的含量在缺铁条件下得以维持,这表明类胡萝卜素的稳定性。这些变化发生得更缓慢,只有在细胞内铁配额响应后才会发生,这表明衣藻的反应是分阶段的,在适应缺铁营养时涉及到初级和次级反应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验