Suppr超能文献

一种估计暴露真实效应的实用方法,尽管暴露分类不精确。

A practical approach to estimating the true effect of exposure despite imprecise exposure classification.

作者信息

Weinkam J J, Rosenbaum W L, Sterling T D

机构信息

Faculty of Applied Sciences, School of Computing Science, Simon Fraser University, Burnaby, British Columbia, Canada.

出版信息

Am J Ind Med. 1991;19(5):587-601. doi: 10.1002/ajim.4700190504.

Abstract

Accurate information on actual exposure to some possibly toxic agent usually is not available in long-term occupational studies. Any strategy for assigning exposure levels or categories necessarily results in misclassification, where some individuals classified as exposed have no real exposure and some individuals classified as not exposed have some exposure to the agent. Both misclassification errors serve to reduce the estimate of risk associated with exposure. The question arises, "How much does the true risk depart from the observed estimate given an assumed level of misclassification?" This paper quantifies the effect of such misclassification on several forms of standardized risk ratios. Our results express the true risk as a function of the apparent risk based on imprecise exposure classification and parameters representing the proportion of each of the groups that are correctly classified. In any practical situation, the apparent risk can be computed based on whatever classification scheme is being used. On the other hand, the proportions of the imprecisely classified groups actually exposed cannot. However, the investigator may have information or may make assumptions for likely ranges of values for these proportions. Given the apparent risk, estimated true risks can be calculated and plotted or represented in tabular form as a function of the proportions of actual exposure. The resulting graph or table enables the investigator to read off the range of possible true risk values based on what he is prepared to believe or what other information indicates about the range of proportions of misclassified subjects. For instance, results for a typical value of apparent risk of 1.8 show that the true risk may be twice the apparent risk with only 23% misclassification in each exposure group. The value of the true risk that would be necessary to be consistent with a given apparent risk increases rapidly as the extent of misclassification increases. We also show that, if the extent of misclassification is large, the apparent relative risk is close to 1.0 regardless of the actual value of the true risk. Therefore, a small apparent risk does not necessarily indicate that there is no occupational hazard.

摘要

在长期职业研究中,通常无法获得关于实际接触某些可能有毒物质的准确信息。任何确定接触水平或类别的策略都必然会导致错误分类,即一些被归类为接触者的个体实际上并未接触,而一些被归类为未接触者的个体却接触了该物质。这两种错误分类都会降低与接触相关的风险估计值。问题在于,“在假定的错误分类水平下,真实风险与观察到的估计值相差多少?” 本文量化了这种错误分类对几种标准化风险比形式的影响。我们的结果将真实风险表示为基于不精确接触分类的表观风险以及代表每组正确分类比例的参数的函数。在任何实际情况下,表观风险都可以根据所使用的任何分类方案进行计算。另一方面,实际接触的不精确分类组的比例却无法计算。然而,研究人员可能有相关信息,或者可以对这些比例的可能取值范围做出假设。给定表观风险后,可以计算估计的真实风险,并将其绘制成图或以表格形式呈现为实际接触比例的函数。由此得到的图表使研究人员能够根据他愿意相信的内容或其他信息所表明的错误分类对象比例范围,读出可能的真实风险值范围。例如,对于表观风险典型值为1.8的结果表明,在每个接触组中只有23%的错误分类时,真实风险可能是表观风险的两倍。随着错误分类程度的增加,与给定表观风险一致所需的真实风险值会迅速增加。我们还表明,如果错误分类程度很大,无论真实风险的实际值如何,表观相对风险都接近1.0。因此,表观风险小并不一定表明不存在职业危害。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验