Schwartzbaum J A, Setzer R W, Kupper L L
Department of Preventive Medicine, Ohio State University, Columbus 43210.
Epidemiology. 1994 May;5(3):315-23. doi: 10.1097/00001648-199405000-00010.
Apparent relative sensitivity, based on an investigator's external standard, is the ratio of observed case to control exposure sensitivity. An apparent relative sensitivity different from 1.0 is usually interpreted as evidence for differential misclassification of exposure status. We undertook this investigation to determine the conditions under which an apparent relative sensitivity exceeding 1.0 is actually due to differential misclassification. We also consider whether apparent relative sensitivity correctly quantifies the degree of differential misclassification. To achieve these goals, we derived an algebraic relation involving apparent relative sensitivity, true sensitivities and specificities, true odds ratio, an index of how well the external standard classifies true exposure, and the incidence of the disease among the nonexposed. We found that an apparent relative sensitivity greater than 1.0 correctly indicates differential misclassification when either (1) the investigator's external standard classifies true exposure perfectly, or (2) the investigator's external standard is imperfect, but the true odds ratio equals 1.0, true relative sensitivity is greater than 1.0, and true relative specificity is less than 1.0. We also found that apparent relative sensitivity greater than 1.0 falsely suggests differential misclassification when true relative sensitivity equals 1.0, the investigator's external standard is imperfect, and the true odds ratio is greater than 1.0. Furthermore, even when apparent relative sensitivity correctly detects the presence of differential misclassification, it may misrepresent the degree.
基于研究者外部标准的表观相对敏感性,是观察到的病例组与对照组暴露敏感性的比值。与1.0不同的表观相对敏感性通常被解释为暴露状态存在差异错误分类的证据。我们进行这项研究,以确定表观相对敏感性超过1.0实际上是由差异错误分类导致的条件。我们还考虑表观相对敏感性是否正确地量化了差异错误分类的程度。为实现这些目标,我们推导了一个代数关系式,该式涉及表观相对敏感性、真实敏感性和特异性、真实比值比、外部标准对真实暴露的分类效果指标以及未暴露人群中的疾病发病率。我们发现,当满足以下两种情况之一时,大于1.0的表观相对敏感性能正确表明存在差异错误分类:(1)研究者的外部标准能完美地对真实暴露进行分类;或者(2)研究者的外部标准不完美,但真实比值比等于1.0,真实相对敏感性大于1.0,且真实相对特异性小于1.0。我们还发现,当真实相对敏感性等于1.0,研究者的外部标准不完美,且真实比值比大于1.0时,大于1.0的表观相对敏感性会错误地提示存在差异错误分类。此外,即使表观相对敏感性能正确检测到差异错误分类的存在,它也可能会错误地表示其程度。