Department of Chemistry, Cambridge University, Lensfield Road, Cambridge CB2 1EW, UK.
J Phys Chem B. 2010 Jul 8;114(26):8790-8. doi: 10.1021/jp102575b.
Despite initial successes in folding of proteins by molecular simulation, it is becoming increasingly evident that current energy functions (force fields) tend to favor either alpha or beta secondary structure, such that the choice of force field is governed by the structural class of the protein. Here, we study the folding of peptides with either predominantly alpha (Trp cage) or beta (GB1 hairpin) structure with a modified version of the Amber ff03 force field, optimized to reproduce structural propensity in a helix-forming peptide. Using extensive replica exchange molecular dynamics simulations starting from completely unfolded configurations, we obtain the correct folded structure for each peptide, in close agreement with the experimental native structure (<1.5 A all-atom root-mean-square deviation). We obtain converged equilibrium distributions, with folded populations at standard conditions (approximately 300 K), in remarkable accord with experiment. Further comparison to experimental data from NMR spectroscopy and FRET suggests that although the folded structures are accurately reproduced, the unfolded state remains too structured and compact. Our results suggest that the backbone correction results in a force field that is transferable to the folding of proteins from different structural classes.
尽管分子模拟在蛋白质折叠方面取得了初步成功,但越来越明显的是,当前的能量函数(力场)往往偏向于α或β二级结构,因此力场的选择取决于蛋白质的结构类别。在这里,我们使用经过修改的 Amber ff03 力场研究了具有主要α(色氨酸笼)或β(GB1 发夹)结构的肽的折叠,该力场经过优化可在形成螺旋的肽中重现结构倾向性。使用从完全展开的构型开始的广泛复制交换分子动力学模拟,我们获得了每个肽的正确折叠结构,与实验天然结构非常吻合(所有原子均方根偏差<1.5 A)。我们获得了收敛的平衡分布,在标准条件(约 300 K)下,折叠的种群与实验结果非常吻合。与来自 NMR 光谱和 FRET 的实验数据的进一步比较表明,尽管折叠结构得到了准确的重现,但未折叠状态仍然过于结构化和紧凑。我们的结果表明,骨架修正导致力场可转移到来自不同结构类别的蛋白质折叠。