Elevation Biotech, 8 Blackwood Avenue, Parktown 2193, Johannesburg, South Africa.
J Biol Chem. 2010 Aug 13;285(33):25743-52. doi: 10.1074/jbc.M110.144121. Epub 2010 Jun 10.
HIV-1 enters cells via interaction between the trimeric envelope (Env) glycoprotein gp120/gp41 and the host cell surface receptor molecule CD4. The requirement of CD4 for viral entry has rationalized the development of recombinant CD4-based proteins as competitive viral attachment inhibitors and immunotherapeutic agents. In this study, we describe a novel recombinant CD4 protein designed to bind gp120 through a targeted disulfide-exchange mechanism. According to structural models of the gp120-CD4 receptor complex, substitution of Ser(60) on the CD4 domain 1 alpha-helix with Cys positions a thiol in proximity of the gp120 V1/V2 loop disulfide (Cys(126)-Cys(196)), satisfying the stereochemical and geometric conditions for redox exchange between CD4 Cys(60) and gp120 Cys(126), and the consequent formation of an interchain disulfide bond. In this study, we provide experimental evidence for this effect by describing the expression, purification, refolding, receptor binding and antiviral activity analysis of a recombinant two-domain CD4 variant containing the S60C mutation (2dCD4-S60C). We show that 2dCD4-S60C binds HIV-1 gp120 with a significantly higher affinity than wild-type protein under conditions that facilitate disulfide exchange and that this translates into a corresponding increase in the efficacy of CD4-mediated viral entry inhibition. We propose that targeted redox exchange between conserved gp120 disulfides and nucleophilic moieties positioned strategically on CD4 (or CD4-like scaffolds) conceptualizes a new strategy in the development of high affinity HIV-1 Env ligands, with important implications for therapy and vaccine development. More generally, this chalcogen substitution approach provides a general means of stabilizing receptor-ligand complexes where the structural and biophysical conditions for disulfide exchange are satisfied.
HIV-1 通过三聚体包膜(Env)糖蛋白 gp120/gp41 与宿主细胞表面受体分子 CD4 之间的相互作用进入细胞。CD4 对病毒进入的需求使得基于重组 CD4 的蛋白作为竞争性病毒附着抑制剂和免疫治疗剂的开发合理化。在这项研究中,我们描述了一种新型重组 CD4 蛋白,该蛋白通过靶向二硫键交换机制设计用于与 gp120 结合。根据 gp120-CD4 受体复合物的结构模型,用半胱氨酸取代 CD4 结构域 1 α-螺旋上的丝氨酸(Ser)60,使巯基靠近 gp120 V1/V2 环二硫键(Cys126-Cys196),满足 CD4 Cys60 和 gp120 Cys126 之间氧化还原交换的立体化学和几何条件,以及随之形成的链间二硫键。在这项研究中,我们通过描述含有 S60C 突变的重组二域 CD4 变体(2dCD4-S60C)的表达、纯化、重折叠、受体结合和抗病毒活性分析,提供了这一效应的实验证据。我们表明,在有利于二硫键交换的条件下,2dCD4-S60C 与 HIV-1 gp120 的结合亲和力明显高于野生型蛋白,并且这转化为 CD4 介导的病毒进入抑制的功效相应增加。我们提出,保守的 gp120 二硫键与战略性定位在 CD4 上(或 CD4 样支架上)的亲核部分之间的靶向氧化还原交换,为开发高亲和力 HIV-1 Env 配体提供了一种新策略,对治疗和疫苗开发具有重要意义。更一般地说,这种硫属元素取代方法为满足二硫键交换结构和生物物理条件的受体-配体复合物的稳定提供了一种通用方法。