Department of Biology, Institute of Cell Biology, ETH Zurich, 8093 Zurich, Switzerland.
J Biol Chem. 2010 Aug 13;285(33):25753-66. doi: 10.1074/jbc.M109.093468. Epub 2010 Jun 10.
Transforming growth factor-beta-activated kinase 1 (TAK1), an MAP3K, is a key player in processing a multitude of inflammatory stimuli. TAK1 autoactivation involves the interplay with TAK1-binding proteins (TAB), e.g. TAB1 and TAB2, and phosphorylation of several activation segment residues. However, the TAK1 autoactivation is not yet fully understood on the molecular level due to the static nature of available x-ray structural data and the complexity of cellular systems applied for investigation. Here, we established a bacterial expression system to generate recombinant mammalian TAK1 complexes. Co-expression of TAK1 and TAB1, but not TAB2, resulted in a functional and active TAK1-TAB1 complex capable of directly activating full-length heterotrimeric mammalian AMP-activated protein kinase (AMPK) in vitro. TAK1-dependent AMPK activation was mediated via hydrophobic residues of the AMPK kinase domain alphaG-helix as observed in vitro and in transfected cell culture. Co-immunoprecipitation of differently epitope-tagged TAK1 from transfected cells and mutation of hydrophobic alphaG-helix residues in TAK1 point to an intermolecular mechanism of TAB1-induced TAK1 autoactivation, as TAK1 autophosphorylation of the activation segment was impaired in these mutants. TAB1 phosphorylation was enhanced in a subset of these mutants, indicating a critical role of alphaG-helix residues in this process. Analyses of phosphorylation site mutants of the activation segment indicate that autophosphorylation of Ser-192 precedes TAB1 phosphorylation and is followed by sequential phosphorylation of Thr-178, Thr-187, and finally Thr-184. Finally, we present a model for the chronological order of events governing TAB1-induced TAK1 autoactivation.
转化生长因子-β激活激酶 1(TAK1)是一种 MAP3K,是处理多种炎症刺激的关键分子。TAK1 的自动激活涉及与 TAK1 结合蛋白(TAB),例如 TAB1 和 TAB2 的相互作用,以及几个激活片段残基的磷酸化。然而,由于现有 X 射线结构数据的静态性质和用于研究的细胞系统的复杂性,TAK1 的自动激活在分子水平上尚未完全理解。在这里,我们建立了一个细菌表达系统来产生重组哺乳动物 TAK1 复合物。TAK1 和 TAB1 的共表达,但不是 TAB2,导致功能和活性的 TAK1-TAB1 复合物能够在体外直接激活全长异三聚体哺乳动物 AMP 激活的蛋白激酶(AMPK)。TAK1 依赖性 AMPK 激活是通过 AMPK 激酶结构域 alphaG-螺旋的疏水性残基介导的,如在体外和转染的细胞培养中观察到的那样。转染细胞中不同表位标记的 TAK1 的共免疫沉淀和 TAK1 中疏水性 alphaG-螺旋残基的突变指向 TAB1 诱导的 TAK1 自动激活的分子间机制,因为这些突变体中 TAK1 激活片段的自磷酸化受损。在这些突变体中,TAB1 的磷酸化增强,表明 alphaG-螺旋残基在这个过程中起着关键作用。对激活片段磷酸化位点突变体的分析表明,Ser-192 的自磷酸化先于 TAB1 的磷酸化,随后是 Thr-178、Thr-187 的顺序磷酸化,最后是 Thr-184。最后,我们提出了一个控制 TAB1 诱导的 TAK1 自动激活的事件时间顺序的模型。