Suppr超能文献

穆勒矩阵双旋转补偿器椭圆偏振测量法中的二阶系统误差。

Second-order systematic errors in Mueller matrix dual rotating compensator ellipsometry.

作者信息

Broch Laurent, En Naciri Aotmane, Johann Luc

机构信息

Laboratoire de Physique des Milieux Denses, Universite Paul Verlaine-Metz, 1 Boulevard Arago CP 87811, F-57078 Metz Cedex 3, France.

出版信息

Appl Opt. 2010 Jun 10;49(17):3250-8. doi: 10.1364/AO.49.003250.

Abstract

We investigate the systematic errors at the second order for a Mueller matrix ellipsometer in the dual rotating compensator configuration. Starting from a general formalism, we derive explicit second-order errors in the Mueller matrix coefficients of a given sample. We present the errors caused by the azimuthal inaccuracy of the optical components and their influences on the measurements. We demonstrate that the methods based on four-zone or two-zone averaging measurement are effective to vanish the errors due to the compensators. For the other elements, it is shown that the systematic errors at the second order can be canceled only for some coefficients of the Mueller matrix. The calibration step for the analyzer and the polarizer is developed. This important step is necessary to avoid the azimuthal inaccuracy in such elements. Numerical simulations and experimental measurements are presented and discussed.

摘要

我们研究了双旋转补偿器配置下穆勒矩阵椭圆偏振仪的二阶系统误差。从一般形式出发,我们推导了给定样品穆勒矩阵系数中的显式二阶误差。我们给出了光学元件方位角不准确所导致的误差及其对测量的影响。我们证明了基于四区或两区平均测量的方法对于消除补偿器引起的误差是有效的。对于其他元件,结果表明仅对穆勒矩阵的某些系数可以消除二阶系统误差。我们提出了检偏器和起偏器的校准步骤。这一重要步骤对于避免此类元件中的方位角不准确是必要的。我们给出并讨论了数值模拟和实验测量结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验