Suppr超能文献

肾脏中 RET 功能障碍的多种表现形式。

The many faces of RET dysfunction in kidney.

机构信息

Departments of Internal Medicine (Renal Division), Pathology and Immunology; Washington University School of Medicine; St. Louis, MO USA.

出版信息

Organogenesis. 2009 Oct;5(4):177-90. doi: 10.4161/org.5.4.10048.

Abstract

Signaling pathways that are activated upon interaction of glial cell-line derived neurotrophic factor (Gdnf), its coreceptor Gfra1, and receptor tyrosine kinase Ret are critical for kidney development and ureter maturation. Outside the kidney, this pathway is implicated in a number of congenital diseases including Hirschsprung disease (intestinal aganglionosis, HSCR) and hereditary cancer syndromes (MEN 2). Total lack of Gdnf, Gfra1 or Ret in mice results in perinatal lethality due to bilateral renal agenesis or aplasia. In humans, RET mutations have been identified in a spectrum of congenital malformations involving the RET axis including isolated HSCR, isolated congenital anomalies of kidney or urinary tract (CAKUT), or CAKUT and HSCR together. The molecular basis for these pleiotropic effects of RET has just begun to be unraveled. In an effort to delineate the pathogenetic mechanisms that underlie these congenital malformations, we and others have characterized Ret's role in early kidney and urinary system development. Here we present a brief overview of the "many faces" of Ret dysfunction in kidney with particular emphasis on Ret's signaling specificity and intergenic interactions that confer normal urinary system development.

摘要

胶质细胞源性神经营养因子(GDNF)与其核心受体 Gfra1 和受体酪氨酸激酶 Ret 相互作用后被激活的信号通路对于肾脏发育和输尿管成熟至关重要。在肾脏外,该通路与许多先天性疾病有关,包括先天性巨结肠(肠无神经节,HSCR)和遗传性癌症综合征(MEN 2)。Gdnf、Gfra1 或 Ret 在小鼠中的完全缺失会导致围产期死亡,因为双侧肾脏发育不全或发育不良。在人类中,已经在涉及 RET 轴的一系列先天性畸形中鉴定出 RET 突变,包括孤立性 HSCR、孤立性肾脏或泌尿系统先天性异常(CAKUT),或 CAKUT 和 HSCR 一起。RET 这些多效性效应的分子基础才刚刚开始被揭示。为了阐明这些先天性畸形的发病机制,我们和其他研究人员已经描述了 Ret 在早期肾脏和泌尿系统发育中的作用。在这里,我们简要概述了 Ret 在肾脏中的“多面性”功能障碍,特别强调了 Ret 的信号特异性和基因间相互作用,这些特异性和相互作用赋予了正常的泌尿系统发育。

相似文献

1
The many faces of RET dysfunction in kidney.肾脏中 RET 功能障碍的多种表现形式。
Organogenesis. 2009 Oct;5(4):177-90. doi: 10.4161/org.5.4.10048.
5
To bud or not to bud: the RET perspective in CAKUT.萌芽与否:CAKUT中RET的视角
Pediatr Nephrol. 2014 Apr;29(4):597-608. doi: 10.1007/s00467-013-2606-5.

引用本文的文献

1
The genetic etiologies of bilateral renal agenesis.双侧肾发育不全的遗传病因。
Prenat Diagn. 2024 Feb;44(2):205-221. doi: 10.1002/pd.6516. Epub 2024 Jan 5.
2
Harnessing mechanobiology for kidney organoid research.利用机械生物学进行肾类器官研究。
Front Cell Dev Biol. 2023 Nov 24;11:1273923. doi: 10.3389/fcell.2023.1273923. eCollection 2023.
4
Receptor tyrosine kinase inhibitors in cancer.受体酪氨酸激酶抑制剂在癌症中的应用。
Cell Mol Life Sci. 2023 Mar 22;80(4):104. doi: 10.1007/s00018-023-04729-4.
6
3D kidney organoids for bench-to-bedside translation.用于从基础到临床转化的 3D 肾脏类器官。
J Mol Med (Berl). 2021 Apr;99(4):477-487. doi: 10.1007/s00109-020-01983-y. Epub 2020 Oct 9.
7
Ret Receptor Has Distinct Alterations and Functions in Breast Cancer.Ret 受体在乳腺癌中有独特的改变和功能。
J Mammary Gland Biol Neoplasia. 2020 Mar;25(1):13-26. doi: 10.1007/s10911-020-09445-4. Epub 2020 Feb 21.
8
Modeling Renal Disease "On the Fly".在飞行中模拟肾脏疾病。
Biomed Res Int. 2018 May 31;2018:5697436. doi: 10.1155/2018/5697436. eCollection 2018.
9
Centrosome amplification disrupts renal development and causes cystogenesis.中心体扩增破坏肾脏发育并导致囊形成。
J Cell Biol. 2018 Jul 2;217(7):2485-2501. doi: 10.1083/jcb.201710019. Epub 2018 Jun 12.

本文引用的文献

5
7
Renal aplasia in humans is associated with RET mutations.人类肾发育不全与RET基因突变有关。
Am J Hum Genet. 2008 Feb;82(2):344-51. doi: 10.1016/j.ajhg.2007.10.008. Epub 2008 Jan 31.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验