Department of Chemistry and Centre for Research in Mass Spectrometry, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3.
Phys Chem Chem Phys. 2010 Aug 21;12(31):9017-28. doi: 10.1039/c001908a. Epub 2010 Jun 10.
The collision-induced dissociations are reported for Cu(II) complexes containing 1,4,7-triazacyclononane (tacn) as the auxiliary ligand and a peptide containing one cystine residue. For six of the complexes examined, cleavage of the S-S bond in the peptide was the dominant fragmentation pathway. The exceptions were for complexes containing the largest peptides, (GlyCys'Gly)(2) and (GlyGlyCys')(2) (Cys' = NHCH(CH(2)S)CO, one half of the cystine residue; terminal H and OH are implicit), for which proton transfer to the auxiliary ligand was the major channel. Cleavage of the C-S bond was observed, but was a minor channel for all complexes. The radical cation (Cys')(2)(+) was not observed although the complementary ion Cu(I)(tacn) was present in moderate abundance. Density functional calculations (at B3LYP/6-311++G(d,p)) gave low barriers to fragmentation of (Cys')(2)(+) by homolytic fission of the C-S bond of the canonical ion (barrier 16.5 kcal mol(-1)) and of the structure at the global minimum, a captodative ion (barrier 17.2 kcal mol(-1)). Peptide radical cations (GlyCys')(2)(+), (GlyCys'Gly)(2)(+), (GlyGlyCys')(2)(+) and (GlyCys'(Cys')Gly)(+) were observed in low abundances; the first two of these ions dissociated predominantly by fragmentation of the S-S bond, while the other two preferentially cleaved at an amide bond. No cleavage of the C-S bond was observed for the peptide radical cations. Density functional calculations at B3LYP/6-31G(d) established that the cystine in Cu(II)(tacn)(Cys')(2) is bound as a zwitterion through the carboxylate anion with the proton on the distal amino group. The lowest energy complex containing a canonical cystine, coordinated through the carbonyl oxygen and the amino group of the same Cys', is 8.3 kcal mol(-1) higher in enthalpy.
报告了含有 1,4,7-三氮杂环壬烷(tacn)作为辅助配体和含有一个半胱氨酸残基的肽的 Cu(II) 配合物的碰撞诱导解离。在所研究的六个配合物中,肽中的 S-S 键的断裂是主要的断裂途径。例外的是含有最大肽的配合物,(GlyCys'Gly)(2)和(GlyGlyCys')(2)(Cys'=NHCH(CH(2)S)CO,半胱氨酸残基的一半;末端 H 和 OH 是隐含的),对于这些配合物,质子转移到辅助配体是主要通道。观察到 C-S 键的断裂,但对于所有配合物来说,这是一个次要通道。虽然存在中等丰度的互补离子[Cu(I)(tacn)](+),但没有观察到自由基阳离子(Cys')(2)(+)。密度泛函计算(在 B3LYP/6-311++G(d,p))给出了通过典型离子(C-S)键的均裂(势垒 16.5 kcal mol(-1))和结构的均裂使(Cys')(2)(+)断裂的低能垒)在全局最小值处,捕获离子(势垒 17.2 kcal mol(-1))。肽自由基阳离子(GlyCys')(2)(+)、(GlyCys'Gly)(2)(+)、(GlyGlyCys')(2)(+)和(GlyCys'(Cys')Gly)(+)以低丰度存在;前两种离子主要通过 S-S 键的断裂而解离,而后两种则优先在酰胺键处断裂。肽自由基阳离子未观察到 C-S 键的断裂。在 B3LYP/6-31G(d)上的密度泛函计算确定,[Cu(II)(tacn)(Cys')(2)](*2+)中的胱氨酸通过羧酸根阴离子与远端氨基上的质子结合形成两性离子。通过羰基氧和同一 Cys'的氨基配位的含有典型胱氨酸的最低能量配合物的焓高 8.3 kcal mol(-1)。