Suppr超能文献

用于检验不确定基因型与数量性状之间关联的方法。

Methods for testing association between uncertain genotypes and quantitative traits.

机构信息

Department of Medical Genetics, University of Lausanne, Rue du Bugnon 27, 1005 Lausanne, Switzerland.

出版信息

Biostatistics. 2011 Jan;12(1):1-17. doi: 10.1093/biostatistics/kxq039. Epub 2010 Jun 11.

Abstract

Interpretability and power of genome-wide association studies can be increased by imputing unobserved genotypes, using a reference panel of individuals genotyped at higher marker density. For many markers, genotypes cannot be imputed with complete certainty, and the uncertainty needs to be taken into account when testing for association with a given phenotype. In this paper, we compare currently available methods for testing association between uncertain genotypes and quantitative traits. We show that some previously described methods offer poor control of the false-positive rate (FPR), and that satisfactory performance of these methods is obtained only by using ad hoc filtering rules or by using a harsh transformation of the trait under study. We propose new methods that are based on exact maximum likelihood estimation and use a mixture model to accommodate nonnormal trait distributions when necessary. The new methods adequately control the FPR and also have equal or better power compared to all previously described methods. We provide a fast software implementation of all the methods studied here; our new method requires computation time of less than one computer-day for a typical genome-wide scan, with 2.5 M single nucleotide polymorphisms and 5000 individuals.

摘要

通过使用在更高标记密度下进行基因分型的个体参考面板来推断未观察到的基因型,可以提高全基因组关联研究的可解释性和效力。对于许多标记,基因型不能完全确定地推断出来,因此在测试与给定表型的关联时需要考虑到这种不确定性。在本文中,我们比较了目前用于测试不确定基因型与定量性状之间关联的方法。我们表明,一些先前描述的方法提供了较差的假阳性率(FPR)控制,并且只有通过使用特定的过滤规则或通过对研究中的性状进行苛刻的转换,才能获得这些方法的满意性能。我们提出了新的方法,这些方法基于精确的最大似然估计,并在必要时使用混合模型来适应非正态性状分布。与所有先前描述的方法相比,新方法可以充分控制 FPR,并且还具有相同或更好的功效。我们提供了这里研究的所有方法的快速软件实现;我们的新方法对于典型的全基因组扫描,使用 250 万个单核苷酸多态性和 5000 个个体,所需的计算时间不到一天。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验