Suppr超能文献

家犬品种的咀嚼率。

Chewing rates among domestic dog breeds.

机构信息

Department of Biologic and Materials Sciences, School of Dentistry, Department of Psychology, University of Michigan, Ann Arbor, MI 48109-1078, USA.

出版信息

J Exp Biol. 2010 Jul 1;213(Pt 13):2266-72. doi: 10.1242/jeb.030213.

Abstract

The mammalian masticatory rhythm is produced by a brainstem timing network. The rhythm is relatively fixed within individual animals but scales allometrically with body mass (M(b)) across species. It has been hypothesized that sensory feedback and feed-forward adjust the rhythm to match the jaw's natural resonance frequency, with allometric scaling being an observable consequence. However, studies performed with adult animals show that the rhythm is not affected by jaw mass manipulations, indicating that either developmental or evolutionary mechanisms are required for allometry to become manifest. The present study was performed to tease out the relative effects of development versus natural selection on chewing rate allometry. Thirty-one dog breeds and 31 mass-matched non-domestic mammalian species with a range in M(b) from approximately 2 kg to 50 kg were studied. Results demonstrated that the chewing rhythm did not scale with M(b) among dog breeds (R=0.299, P>0.10) or with jaw length (L(j)) (R=0.328, P>0.05). However, there was a significant relationship between the chewing rhythm and M(b) among the non-domestic mammals (R=0.634, P<0.001). These results indicate that scaling is not necessary in the adult animal. We conclude that the central timing network and related sensorimotor systems may be necessary for rhythm generation but they do not explain the 1/3rd to 1/4th allometric scaling observed among adult mammals. The rhythm of the timing network is either adjusted to the physical parameters of the jaw system during early development only, is genetically determined independently of the jaw system or is uniquely hard-wired among dogs and laboratory rodents.

摘要

哺乳动物的咀嚼节律是由脑干计时网络产生的。该节律在个体动物内相对固定,但在物种间按体质量(M(b))进行异速缩放。有人假设,感觉反馈和前馈会调整节律以匹配下颌的自然共振频率,而异速缩放则是可观察到的结果。然而,对成年动物进行的研究表明,节律不受下颌质量操作的影响,这表明需要发育或进化机制才能表现出异速缩放。本研究旨在探讨发育与自然选择对咀嚼率异速缩放的相对影响。研究了 31 个犬种和 31 个具有从大约 2 公斤到 50 公斤体质量范围的非家养哺乳动物物种,以研究其咀嚼率。结果表明,咀嚼节律在犬种之间(R=0.299,P>0.10)或与下颌长度(L(j))之间(R=0.328,P>0.05)没有按体质量缩放。然而,在非家养哺乳动物中,咀嚼节律与体质量之间存在显著关系(R=0.634,P<0.001)。这些结果表明,在成年动物中,缩放不是必需的。我们得出结论,中央计时网络和相关的感觉运动系统可能是产生节律所必需的,但它们不能解释在成年哺乳动物中观察到的 1/3 到 1/4 异速缩放。计时网络的节律要么仅在早期发育期间根据下颌系统的物理参数进行调整,要么独立于下颌系统由遗传决定,要么在犬和实验室啮齿动物中具有独特的固定模式。

相似文献

1
Chewing rates among domestic dog breeds.
J Exp Biol. 2010 Jul 1;213(Pt 13):2266-72. doi: 10.1242/jeb.030213.
2
Intraspecific scaling of chewing cycle duration in three species of domestic ungulates.
J Exp Biol. 2011 Jan 1;214(Pt 1):104-12. doi: 10.1242/jeb.043646.
3
The time allometry of mammalian chewing movements: chewing frequency scales with body mass in mammals.
J Theor Biol. 1993 Feb 21;160(4):427-40. doi: 10.1006/jtbi.1993.1028.
4
Allometry of masticatory loading parameters in mammals.
Anat Rec (Hoboken). 2010 Apr;293(4):557-71. doi: 10.1002/ar.21133.
5
Modifications of masticatory behavior after trigeminal deafferentation in the rabbit.
Exp Brain Res. 1989;74(3):579-91. doi: 10.1007/BF00247360.
6
Dental functional morphology predicts the scaling of chewing rate in mammals.
J Biomech. 2018 Jan 23;67:32-36. doi: 10.1016/j.jbiomech.2017.11.017. Epub 2017 Nov 27.
7
Relationship between masticatory rhythm, body mass and mandibular morphology in primates.
Arch Oral Biol. 2013 Sep;58(9):1084-91. doi: 10.1016/j.archoralbio.2013.02.009. Epub 2013 Mar 18.
8
Frequency-dependent modulation of rhythmic human jaw movements.
J Dent Res. 1984 Nov;63(11):1310-4. doi: 10.1177/00220345840630111201.
9
Scaling of rotational inertia of primate mandibles.
J Hum Evol. 2017 May;106:119-132. doi: 10.1016/j.jhevol.2017.02.007. Epub 2017 Mar 31.

引用本文的文献

1
Characterizing masticatory motion of dogs using optical and electromagnetic motion tracking.
Front Vet Sci. 2025 Jul 3;12:1625335. doi: 10.3389/fvets.2025.1625335. eCollection 2025.
2
Functional significance and welfare implications of chewing in dogs ().
Front Vet Sci. 2025 Mar 26;12:1499933. doi: 10.3389/fvets.2025.1499933. eCollection 2025.
3
Computer simulations of food oral processing to engineer teeth cleaning.
Nat Commun. 2019 Aug 8;10(1):3571. doi: 10.1038/s41467-019-11288-5.
4
Physics of chewing in terrestrial mammals.
Sci Rep. 2017 Mar 7;7:43967. doi: 10.1038/srep43967.
5
Fracture investigation in starch-based foods.
Interface Focus. 2016 Jun 6;6(3):20160005. doi: 10.1098/rsfs.2016.0005.

本文引用的文献

1
Scaling of chew cycle duration in primates.
Am J Phys Anthropol. 2009 Jan;138(1):30-44. doi: 10.1002/ajpa.20895.
2
Modulation of mandibular loading and bite force in mammals during mastication.
J Exp Biol. 2007 Mar;210(Pt 6):1046-63. doi: 10.1242/jeb.02733.
3
On being small: brain allometry in ants.
Brain Behav Evol. 2007;69(3):220-8. doi: 10.1159/000097057. Epub 2006 Nov 14.
5
Body-weight changes during growth in puppies of different breeds.
J Nutr. 2004 Aug;134(8 Suppl):2027S-2030S. doi: 10.1093/jn/134.8.2027S.
6
Licking rate adaptations to increased mandibular weight in the adult rat.
Physiol Behav. 2004 Sep 15;82(2-3):331-7. doi: 10.1016/j.physbeh.2004.04.003.
7
Genetic structure of the purebred domestic dog.
Science. 2004 May 21;304(5674):1160-4. doi: 10.1126/science.1097406.
8
Neurons of the trigeminal main sensory nucleus participate in the generation of rhythmic motor patterns.
Eur J Neurosci. 2003 Jan;17(2):229-38. doi: 10.1046/j.1460-9568.2003.02450.x.
9
The evolution of feeding motor patterns in vertebrates.
Curr Opin Neurobiol. 2002 Dec;12(6):691-5. doi: 10.1016/s0959-4388(02)00383-5.
10
Characteristics of mastication in the anodontic mouse.
J Dent Res. 2002 Sep;81(9):594-7. doi: 10.1177/154405910208100903.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验