Howard Hughes Medical Institute, Department of Cardiology and Manton Center for Orphan Disease, Children's Hospital Boston, Boston, Massachusetts, USA.
Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA.
Nat Struct Mol Biol. 2010 Jul;17(7):869-875. doi: 10.1038/nsmb.1826. Epub 2010 Jun 13.
Hv1 voltage-gated proton channels mediate rapid and selective transmembrane H(+) flux and are gated by both voltage and pH gradients. Selective H(+) transfer in membrane proteins is commonly achieved by Grotthuss proton 'hopping' in chains of ionizable amino acid side chains and intraprotein water molecules. To identify whether ionizable residues are required for proton permeation in Hv1, we neutralized candidate residues and measured expressed voltage-gated H(+) currents. Unexpectedly, charge neutralization was insufficient to abrogate either the Hv1 conductance or coupling of pH gradient and voltage-dependent activation. Molecular dynamics simulations revealed water molecules in the central crevice of Hv1 model structures but not in homologous voltage-sensor domain (VSD) structures. Our results indicate that Hv1 most likely forms an internal water wire for selective proton transfer and that interactions between water molecules and S4 arginines may underlie coupling between voltage- and pH-gradient sensing.
Hv1 电压门控质子通道介导快速且选择性的跨膜 H(+)通量,并且由电压和 pH 梯度控制。膜蛋白中选择性的 H(+)转移通常通过可离解氨基酸侧链和蛋白质内水分子的 Grotthuss 质子“跳跃”来实现。为了确定 Hv1 中质子渗透是否需要可离解残基,我们中和候选残基并测量表达的电压门控 H(+)电流。出乎意料的是,中和电荷不足以消除 Hv1 电导或 pH 梯度与电压依赖性激活的偶联。分子动力学模拟揭示了 Hv1 模型结构中心裂缝中的水分子,但在同源电压传感器结构域(VSD)结构中没有水分子。我们的结果表明,Hv1 很可能形成了用于选择性质子转移的内部水线,并且水分子与 S4 精氨酸之间的相互作用可能是电压和 pH 梯度感应偶联的基础。