Suppr超能文献

电压门控质子通道 Hv1 中的水合质子渗透途径。

An aqueous H+ permeation pathway in the voltage-gated proton channel Hv1.

机构信息

Howard Hughes Medical Institute, Department of Cardiology and Manton Center for Orphan Disease, Children's Hospital Boston, Boston, Massachusetts, USA.

Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA.

出版信息

Nat Struct Mol Biol. 2010 Jul;17(7):869-875. doi: 10.1038/nsmb.1826. Epub 2010 Jun 13.

Abstract

Hv1 voltage-gated proton channels mediate rapid and selective transmembrane H(+) flux and are gated by both voltage and pH gradients. Selective H(+) transfer in membrane proteins is commonly achieved by Grotthuss proton 'hopping' in chains of ionizable amino acid side chains and intraprotein water molecules. To identify whether ionizable residues are required for proton permeation in Hv1, we neutralized candidate residues and measured expressed voltage-gated H(+) currents. Unexpectedly, charge neutralization was insufficient to abrogate either the Hv1 conductance or coupling of pH gradient and voltage-dependent activation. Molecular dynamics simulations revealed water molecules in the central crevice of Hv1 model structures but not in homologous voltage-sensor domain (VSD) structures. Our results indicate that Hv1 most likely forms an internal water wire for selective proton transfer and that interactions between water molecules and S4 arginines may underlie coupling between voltage- and pH-gradient sensing.

摘要

Hv1 电压门控质子通道介导快速且选择性的跨膜 H(+)通量,并且由电压和 pH 梯度控制。膜蛋白中选择性的 H(+)转移通常通过可离解氨基酸侧链和蛋白质内水分子的 Grotthuss 质子“跳跃”来实现。为了确定 Hv1 中质子渗透是否需要可离解残基,我们中和候选残基并测量表达的电压门控 H(+)电流。出乎意料的是,中和电荷不足以消除 Hv1 电导或 pH 梯度与电压依赖性激活的偶联。分子动力学模拟揭示了 Hv1 模型结构中心裂缝中的水分子,但在同源电压传感器结构域(VSD)结构中没有水分子。我们的结果表明,Hv1 很可能形成了用于选择性质子转移的内部水线,并且水分子与 S4 精氨酸之间的相互作用可能是电压和 pH 梯度感应偶联的基础。

相似文献

1
An aqueous H+ permeation pathway in the voltage-gated proton channel Hv1.
Nat Struct Mol Biol. 2010 Jul;17(7):869-875. doi: 10.1038/nsmb.1826. Epub 2010 Jun 13.
2
Water wires in atomistic models of the Hv1 proton channel.
Biochim Biophys Acta. 2012 Feb;1818(2):286-93. doi: 10.1016/j.bbamem.2011.07.045. Epub 2011 Aug 5.
3
Mapping of sites facing aqueous environment of voltage-gated proton channel at resting state: a study with PEGylation protection.
Biochim Biophys Acta. 2014 Jan;1838(1 Pt B):382-7. doi: 10.1016/j.bbamem.2013.10.001. Epub 2013 Oct 16.
4
Voltage-gated proton (H(v)1) channels, a singular voltage sensing domain.
FEBS Lett. 2015 Nov 14;589(22):3471-8. doi: 10.1016/j.febslet.2015.08.003. Epub 2015 Aug 18.
5
Effect of Ionization State on Voltage-Sensor Structure in Resting State of the Hv1 Channel.
J Phys Chem B. 2019 Apr 4;123(13):2864-2873. doi: 10.1021/acs.jpcb.9b00634. Epub 2019 Mar 21.
6
Voltage-dependent structural models of the human Hv1 proton channel from long-timescale molecular dynamics simulations.
Proc Natl Acad Sci U S A. 2020 Jun 16;117(24):13490-13498. doi: 10.1073/pnas.1920943117. Epub 2020 May 27.
7
The voltage sensor is responsible for ΔpH dependence in H1 channels.
Proc Natl Acad Sci U S A. 2021 May 11;118(19). doi: 10.1073/pnas.2025556118.
8
Hydrophobic gasket mutation produces gating pore currents in closed human voltage-gated proton channels.
Proc Natl Acad Sci U S A. 2019 Sep 17;116(38):18951-18961. doi: 10.1073/pnas.1905462116. Epub 2019 Aug 28.
9
Trp207 regulation of voltage-dependent activation of human H1 proton channel.
J Biol Chem. 2024 Mar;300(3):105674. doi: 10.1016/j.jbc.2024.105674. Epub 2024 Jan 23.
10
Hydrophobic plug functions as a gate in voltage-gated proton channels.
Proc Natl Acad Sci U S A. 2014 Jan 14;111(2):E273-82. doi: 10.1073/pnas.1318018111. Epub 2013 Dec 30.

引用本文的文献

2
Quantitative insights into the mechanism of proton conduction and selectivity for the human voltage-gated proton channel Hv1.
Proc Natl Acad Sci U S A. 2024 Sep 17;121(38):e2407479121. doi: 10.1073/pnas.2407479121. Epub 2024 Sep 11.
3
Zinc inhibits the voltage-gated proton channel HCNL1.
Biophys J. 2024 Dec 17;123(24):4256-4265. doi: 10.1016/j.bpj.2024.08.018. Epub 2024 Aug 28.
4
Dimerization is required for the glycosylation of S1-S2 linker of sea urchin voltage-gated proton channel Hv1.
Biophys J. 2024 Dec 17;123(24):4221-4232. doi: 10.1016/j.bpj.2024.07.034. Epub 2024 Jul 31.
5
Interior pH-sensing residue of human voltage-gated proton channel H1 is histidine 168.
Biophys J. 2024 Dec 17;123(24):4211-4220. doi: 10.1016/j.bpj.2024.07.027. Epub 2024 Jul 25.
6
Water, Protons, and the Gating of Voltage-Gated Potassium Channels.
Membranes (Basel). 2024 Jan 29;14(2):37. doi: 10.3390/membranes14020037.
7
Transcendent Aspects of Proton Channels.
Annu Rev Physiol. 2024 Feb 12;86:357-377. doi: 10.1146/annurev-physiol-042222-023242. Epub 2023 Nov 6.
8
Signaling Roleplay between Ion Channels during Mammalian Sperm Capacitation.
Biomedicines. 2023 Sep 12;11(9):2519. doi: 10.3390/biomedicines11092519.
9
Voltage-Gated Proton Channels in the Tree of Life.
Biomolecules. 2023 Jun 24;13(7):1035. doi: 10.3390/biom13071035.
10
Proton transfer reactions: From photochemistry to biochemistry and bioenergetics.
BBA Adv. 2023 Mar 9;3:100085. doi: 10.1016/j.bbadva.2023.100085. eCollection 2023.

本文引用的文献

1
A gating charge transfer center in voltage sensors.
Science. 2010 Apr 2;328(5974):67-73. doi: 10.1126/science.1185954.
2
Zinc inhibition of monomeric and dimeric proton channels suggests cooperative gating.
J Physiol. 2010 May 1;588(Pt 9):1435-49. doi: 10.1113/jphysiol.2010.188318. Epub 2010 Mar 15.
3
The opening of the two pores of the Hv1 voltage-gated proton channel is tuned by cooperativity.
Nat Struct Mol Biol. 2010 Jan;17(1):44-50. doi: 10.1038/nsmb.1738. Epub 2009 Dec 20.
4
Strong cooperativity between subunits in voltage-gated proton channels.
Nat Struct Mol Biol. 2010 Jan;17(1):51-6. doi: 10.1038/nsmb.1739. Epub 2009 Dec 20.
5
Functionality of the voltage-gated proton channel truncated in S4.
Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):2313-8. doi: 10.1073/pnas.0911868107. Epub 2009 Dec 14.
6
Temperature dependence of proton permeation through a voltage-gated proton channel.
J Gen Physiol. 2009 Sep;134(3):191-205. doi: 10.1085/jgp.200910213.
7
Proton transport pathway in the ClC Cl-/H+ antiporter.
Biophys J. 2009 Jul 8;97(1):121-31. doi: 10.1016/j.bpj.2009.04.038.
8
Sensing voltage across lipid membranes.
Nature. 2008 Dec 18;456(7224):891-7. doi: 10.1038/nature07620.
9
Coarse-grained molecular dynamics simulations of the energetics of helix insertion into a lipid bilayer.
Biochemistry. 2008 Oct 28;47(43):11321-31. doi: 10.1021/bi800642m. Epub 2008 Oct 2.
10
Simulations of a G protein-coupled receptor homology model predict dynamic features and a ligand binding site.
FEBS Lett. 2008 Oct 15;582(23-24):3335-42. doi: 10.1016/j.febslet.2008.08.022. Epub 2008 Sep 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验