Suppr超能文献

检测脂质膜上的电压。

Sensing voltage across lipid membranes.

作者信息

Swartz Kenton J

机构信息

Porter Neuroscience Research Center, Molecular Physiology and Biophysics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA.

出版信息

Nature. 2008 Dec 18;456(7224):891-7. doi: 10.1038/nature07620.

Abstract

The detection of electrical potentials across lipid bilayers by specialized membrane proteins is required for many fundamental cellular processes such as the generation and propagation of nerve impulses. These membrane proteins possess modular voltage-sensing domains, a notable example being the S1-S4 domains of voltage-activated ion channels. Ground-breaking structural studies on these domains explain how voltage sensors are designed and reveal important interactions with the surrounding lipid membrane. Although further structures are needed to understand the conformational changes that occur during voltage sensing, the available data help to frame several key concepts that are fundamental to the mechanism of voltage sensing.

摘要

许多基本的细胞过程,如神经冲动的产生和传播,都需要通过特殊的膜蛋白来检测跨脂质双层的电势。这些膜蛋白具有模块化的电压感应结构域,一个显著的例子是电压激活离子通道的S1 - S4结构域。对这些结构域的开创性结构研究解释了电压传感器的设计方式,并揭示了与周围脂质膜的重要相互作用。尽管需要更多的结构来理解电压感应过程中发生的构象变化,但现有数据有助于构建几个对电压感应机制至关重要的关键概念。

相似文献

1
Sensing voltage across lipid membranes.
Nature. 2008 Dec 18;456(7224):891-7. doi: 10.1038/nature07620.
2
Structural interactions between lipids, water and S1-S4 voltage-sensing domains.
J Mol Biol. 2012 Nov 2;423(4):632-47. doi: 10.1016/j.jmb.2012.07.015. Epub 2012 Jul 31.
3
Structure and hydration of membranes embedded with voltage-sensing domains.
Nature. 2009 Nov 26;462(7272):473-9. doi: 10.1038/nature08542.
4
Structural determinants of voltage-gating properties in calcium channels.
Elife. 2021 Mar 30;10:e64087. doi: 10.7554/eLife.64087.
5
Voltage Sensing in Membranes: From Macroscopic Currents to Molecular Motions.
J Membr Biol. 2015 Jun;248(3):419-30. doi: 10.1007/s00232-015-9805-x. Epub 2015 May 14.
6
Interactions between lipids and voltage sensor paddles detected with tarantula toxins.
Nat Struct Mol Biol. 2009 Oct;16(10):1080-5. doi: 10.1038/nsmb.1679. Epub 2009 Sep 27.
8
A complicated complex: Ion channels, voltage sensing, cell membranes and peptide inhibitors.
Neurosci Lett. 2018 Jul 13;679:35-47. doi: 10.1016/j.neulet.2018.04.030. Epub 2018 Apr 21.
9
Voltage sensors.
Mol Pharmacol. 2025 Feb;107(2):100011. doi: 10.1016/j.molpha.2024.100011. Epub 2024 Dec 12.
10
Voltage sensor conformations in the open and closed states in ROSETTA structural models of K(+) channels.
Proc Natl Acad Sci U S A. 2006 May 9;103(19):7292-7. doi: 10.1073/pnas.0602350103. Epub 2006 Apr 28.

引用本文的文献

1
Atomistic Simulation of Voltage Activation of a Truncated BK Channel.
bioRxiv. 2025 Jun 14:2025.01.08.631907. doi: 10.1101/2025.01.08.631907.
2
Arginine: I. Interactions of Its Guanidinium Moiety with Branched Aliphatic Side Chains.
J Phys Chem B. 2025 Jul 24;129(29):7421-7429. doi: 10.1021/acs.jpcb.5c02168. Epub 2025 Jul 9.
3
Modulation of Kv Channel Gating by Light-Controlled Membrane Thickness.
Biomolecules. 2025 May 21;15(5):744. doi: 10.3390/biom15050744.
4
N-Type Inactivation Variances in Honeybee and Asian Giant Hornet Kv Channels.
Bioelectricity. 2022 Sep 8;4(3):145-152. doi: 10.1089/bioe.2022.0006. eCollection 2022 Sep.
5
ω-Grammotoxin-SIA inhibits voltage-gated Na+ channel currents.
J Gen Physiol. 2024 Oct 7;156(10). doi: 10.1085/jgp.202413563. Epub 2024 Jul 23.
6
Cholesterol modulates the structural dynamics of the paddle motif loop of KvAP voltage sensor.
Curr Res Struct Biol. 2024 Mar 6;7:100137. doi: 10.1016/j.crstbi.2024.100137. eCollection 2024.
7
[Not Available].
Andrology. 2025 Feb;13(2):184-201. doi: 10.1111/andr.13606. Epub 2024 Mar 4.
8
A small-molecule activation mechanism that directly opens the KCNQ2 channel.
Nat Chem Biol. 2024 Jul;20(7):847-856. doi: 10.1038/s41589-023-01515-y. Epub 2024 Jan 2.
9
Beta-Barrel Channel Response to High Electric Fields: Functional Gating or Reversible Denaturation?
Int J Mol Sci. 2023 Nov 23;24(23):16655. doi: 10.3390/ijms242316655.
10

本文引用的文献

1
Deconstructing voltage sensor function and pharmacology in sodium channels.
Nature. 2008 Nov 13;456(7219):202-8. doi: 10.1038/nature07473.
2
Inferred motions of the S3a helix during voltage-dependent K+ channel gating.
J Mol Biol. 2008 Sep 5;381(3):569-80. doi: 10.1016/j.jmb.2008.06.010. Epub 2008 Jun 10.
3
Extent of voltage sensor movement during gating of shaker K+ channels.
Neuron. 2008 Jul 10;59(1):98-109. doi: 10.1016/j.neuron.2008.05.006.
4
Dimeric subunit stoichiometry of the human voltage-dependent proton channel Hv1.
Proc Natl Acad Sci U S A. 2008 Jun 3;105(22):7692-5. doi: 10.1073/pnas.0803277105. Epub 2008 May 28.
5
The voltage-gated proton channel Hv1 has two pores, each controlled by one voltage sensor.
Neuron. 2008 May 22;58(4):546-56. doi: 10.1016/j.neuron.2008.03.026.
6
Structural dynamics of an isolated voltage-sensor domain in a lipid bilayer.
Structure. 2008 Mar;16(3):398-409. doi: 10.1016/j.str.2007.12.015.
8
Removal of phospho-head groups of membrane lipids immobilizes voltage sensors of K+ channels.
Nature. 2008 Feb 14;451(7180):826-9. doi: 10.1038/nature06618.
9
Structure of the transmembrane regions of a bacterial cyclic nucleotide-regulated channel.
Proc Natl Acad Sci U S A. 2008 Feb 5;105(5):1511-5. doi: 10.1073/pnas.0711533105. Epub 2008 Jan 23.
10
Subunit organization and functional transitions in Ci-VSP.
Nat Struct Mol Biol. 2008 Jan;15(1):106-8. doi: 10.1038/nsmb1320. Epub 2007 Dec 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验