Suppr超能文献

Hv1质子通道原子模型中的水线

Water wires in atomistic models of the Hv1 proton channel.

作者信息

Wood Mona L, Schow Eric V, Freites J Alfredo, White Stephen H, Tombola Francesco, Tobias Douglas J

机构信息

Department of Chemistry, University of California, Irvine, CA 92697-2025, USA.

出版信息

Biochim Biophys Acta. 2012 Feb;1818(2):286-93. doi: 10.1016/j.bbamem.2011.07.045. Epub 2011 Aug 5.

Abstract

The voltage-gated proton channel (Hv1) is homologous to the voltage-sensing domain (VSD) of voltage-gated potassium (Kv) channels but lacks a separate pore domain. The Hv1 monomer has dual functions: it gates the proton current and also serves as the proton conduction pathway. To gain insight into the structure and dynamics of the yet unresolved proton permeation pathway, we performed all-atom molecular dynamics simulations of two different Hv1 homology models in a lipid bilayer in excess water. The structure of the Kv1.2-Kv2.1 paddle-chimera VSD was used as template to generate both models, but they differ in the sequence alignment of the S4 segment. In both models, we observe a water wire that extends through the membrane, whereas the corresponding region is dry in simulations of the Kv1.2-Kv2.1 paddle-chimera. We find that the kinetic stability of the water wire is dependent upon the identity and location of the residues lining the permeation pathway, in particular, the S4 arginines. A measurement of water transport kinetics indicates that the water wire is a relatively static feature of the permeation pathway. Taken together, our results suggest that proton conduction in Hv1 may occur via Grotthuss hopping along a robust water wire, with exchange of water molecules between inner and outer ends of the permeation pathway minimized by specific water-protein interactions. This article is part of a Special Issue entitled: Membrane protein structure and function.

摘要

电压门控质子通道(Hv1)与电压门控钾(Kv)通道的电压感应结构域(VSD)同源,但缺少单独的孔道结构域。Hv1单体具有双重功能:它控制质子电流,同时也是质子传导途径。为了深入了解尚未解析的质子渗透途径的结构和动力学,我们在过量水中的脂质双层中对两种不同的Hv1同源模型进行了全原子分子动力学模拟。使用Kv1.2-Kv2.1桨状嵌合体VSD的结构作为模板来生成这两种模型,但它们在S4片段的序列比对上有所不同。在这两种模型中,我们都观察到一条延伸穿过膜的水线,而在Kv1.2-Kv2.1桨状嵌合体的模拟中,相应区域是干燥的。我们发现水线的动力学稳定性取决于渗透途径内衬里残基的身份和位置,特别是S4精氨酸。水传输动力学的测量表明,水线是渗透途径的一个相对静态的特征。综上所述,我们的结果表明,Hv1中的质子传导可能通过沿着一条稳健的水线进行Grotthuss跳跃发生,渗透途径内、外端之间的水分子交换通过特定的水-蛋白质相互作用而最小化。本文是名为:膜蛋白结构与功能的特刊的一部分。

相似文献

1
Water wires in atomistic models of the Hv1 proton channel.Hv1质子通道原子模型中的水线
Biochim Biophys Acta. 2012 Feb;1818(2):286-93. doi: 10.1016/j.bbamem.2011.07.045. Epub 2011 Aug 5.
6
Mechanism of voltage gating in potassium channels.钾通道电压门控机制。
Science. 2012 Apr 13;336(6078):229-33. doi: 10.1126/science.1216533.
7
Hydrophobic plug functions as a gate in voltage-gated proton channels.疏水性塞在电压门控质子通道中起门控作用。
Proc Natl Acad Sci U S A. 2014 Jan 14;111(2):E273-82. doi: 10.1073/pnas.1318018111. Epub 2013 Dec 30.
10
Dimer interaction in the Hv1 proton channel.Hv1 质子通道中的二聚体相互作用。
Proc Natl Acad Sci U S A. 2020 Aug 25;117(34):20898-20907. doi: 10.1073/pnas.2010032117. Epub 2020 Aug 11.

引用本文的文献

2
Voltage-Gated Proton Channels in the Tree of Life.生命之树中的电压门控质子通道。
Biomolecules. 2023 Jun 24;13(7):1035. doi: 10.3390/biom13071035.
9
Water in Nanopores and Biological Channels: A Molecular Simulation Perspective.纳米孔和生物通道中的水:分子模拟视角。
Chem Rev. 2020 Sep 23;120(18):10298-10335. doi: 10.1021/acs.chemrev.9b00830. Epub 2020 Aug 25.

本文引用的文献

4
A gating charge transfer center in voltage sensors.电压传感器中的门控电荷转移中心。
Science. 2010 Apr 2;328(5974):67-73. doi: 10.1126/science.1185954.
9
10
Functionality of the voltage-gated proton channel truncated in S4.S4 截断的电压门控质子通道的功能。
Proc Natl Acad Sci U S A. 2010 Feb 2;107(5):2313-8. doi: 10.1073/pnas.0911868107. Epub 2009 Dec 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验