Suppr超能文献

线粒体蛋白质组:组织和疾病状态下的动态功能程序。

The mitochondrial proteome: a dynamic functional program in tissues and disease states.

机构信息

Laboratory of Cardiac Energetics, National Heart Lung and Blood Institute, Department of Health and Human Services, Bethesda, Maryland, USA.

出版信息

Environ Mol Mutagen. 2010 Jun;51(5):352-9. doi: 10.1002/em.20574.

Abstract

The nuclear DNA transcriptional programming of the mitochondria proteome varies dramatically between tissues depending on its functional requirements. This programming generally regulates all of the proteins associated with a metabolic or biosynthetic pathway associated with a given function, essentially regulating the maximum rate of the pathway while keeping the enzymes at the same molar ratio. This may permit the same regulatory mechanisms to function at low- and high-flux capacity situations. This alteration in total protein content results in rather dramatic changes in the mitochondria proteome between tissues. A tissues mitochondria proteome also changes with disease state, in Type 1 diabetes the liver mitochondrial proteome shifts to support ATP production, urea synthesis, and fatty acid oxidation. Acute flux regulation is modulated by numerous posttranslational events that also are highly variable between tissues. The most studied posttranslational modification is protein phosphorylation, which is found all of the complexes of oxidative phosphorylation and most of the major metabolic pathways. The functional significance of these modifications is currently a major area of research along with the kinase and phosphatase regulatory network. This near ubiquitous presence of protein phosphorylations, and other posttranslational events, in the matrix suggest that not all posttranslational events have functional significance. Screening methods are being introduced to detect the active or dynamic posttranslational sites to focus attention on sites that might provide insight into regulatory mechanisms.

摘要

线粒体蛋白质组的核 DNA 转录编程因组织的功能需求而在不同组织之间发生巨大变化。这种编程通常调节与特定功能相关的代谢或生物合成途径相关的所有蛋白质,本质上调节途径的最大速率,同时使酶保持相同的摩尔比。这可能允许相同的调节机制在低通量和高通量情况下发挥作用。这种总蛋白质含量的变化导致组织之间线粒体蛋白质组的相当大的变化。组织的线粒体蛋白质组也会随着疾病状态而改变,在 1 型糖尿病中,肝脏线粒体蛋白质组向支持 ATP 生成、尿素合成和脂肪酸氧化转移。急性通量调节受许多翻译后事件的调节,这些事件在组织之间也高度可变。研究最多的翻译后修饰是蛋白质磷酸化,它存在于氧化磷酸化的所有复合物和大多数主要代谢途径中。这些修饰的功能意义目前是一个主要的研究领域,还有激酶和磷酸酶调节网络。这些翻译后事件,包括蛋白质磷酸化,在基质中几乎普遍存在,这表明并非所有翻译后事件都具有功能意义。正在引入筛选方法来检测活性或动态翻译后位点,以关注可能为调节机制提供见解的位点。

相似文献

1
The mitochondrial proteome: a dynamic functional program in tissues and disease states.
Environ Mol Mutagen. 2010 Jun;51(5):352-9. doi: 10.1002/em.20574.
2
The potato tuber mitochondrial proteome.
Plant Physiol. 2014 Feb;164(2):637-53. doi: 10.1104/pp.113.229054. Epub 2013 Dec 18.
3
The human mitochondrial proteome: oxidative stress, protein modifications and oxidative phosphorylation.
Int J Biochem Cell Biol. 2005 May;37(5):927-34. doi: 10.1016/j.biocel.2004.11.013. Epub 2005 Jan 8.
4
Tissue-specific remodeling of the mitochondrial proteome in type 1 diabetic akita mice.
Diabetes. 2009 Sep;58(9):1986-97. doi: 10.2337/db09-0259. Epub 2009 Jun 19.
5
Acute exercise dynamically modulates the hepatic mitochondrial proteome.
Mol Omics. 2022 Oct 31;18(9):840-852. doi: 10.1039/d2mo00143h.
6
Unraveling the phosphoproteome dynamics in mammal mitochondria from a network perspective.
J Proteome Res. 2013 Oct 4;12(10):4257-67. doi: 10.1021/pr4003917. Epub 2013 Sep 6.
7
Insulin Regulation of Proteostasis and Clinical Implications.
Cell Metab. 2017 Aug 1;26(2):310-323. doi: 10.1016/j.cmet.2017.06.010. Epub 2017 Jul 14.
8
Proteomic alterations of distinct mitochondrial subpopulations in the type 1 diabetic heart: contribution of protein import dysfunction.
Am J Physiol Regul Integr Comp Physiol. 2011 Feb;300(2):R186-200. doi: 10.1152/ajpregu.00423.2010. Epub 2010 Nov 3.
9
Linking bioenergetic function of mitochondria to tissue-specific molecular fingerprints.
Am J Physiol Endocrinol Metab. 2019 Aug 1;317(2):E374-E387. doi: 10.1152/ajpendo.00088.2019. Epub 2019 Jun 18.

引用本文的文献

2
Mitochondrial Fission Protein 1: Emerging Roles in Organellar Form and Function in Health and Disease.
Front Endocrinol (Lausanne). 2021 Mar 25;12:660095. doi: 10.3389/fendo.2021.660095. eCollection 2021.
3
Fyn kinase regulates translation in mammalian mitochondria.
Biochim Biophys Acta Gen Subj. 2017 Mar;1861(3):533-540. doi: 10.1016/j.bbagen.2016.12.004. Epub 2016 Dec 7.
4
Spatial and temporal dynamics of the cardiac mitochondrial proteome.
Expert Rev Proteomics. 2015 Apr;12(2):133-46. doi: 10.1586/14789450.2015.1024227. Epub 2015 Mar 9.
5
The impact of mitochondrial function/dysfunction on IVF and new treatment possibilities for infertility.
Reprod Biol Endocrinol. 2014 Nov 24;12:111. doi: 10.1186/1477-7827-12-111.
6
Mitochondrial targets for pharmacological intervention in human disease.
J Proteome Res. 2015 Jan 2;14(1):5-21. doi: 10.1021/pr500813f. Epub 2014 Dec 12.
7
Role of soluble adenylyl cyclase in mitochondria.
Biochim Biophys Acta. 2014 Dec;1842(12 Pt B):2555-60. doi: 10.1016/j.bbadis.2014.05.035. Epub 2014 Jun 5.
8
Characterization, design, and function of the mitochondrial proteome: from organs to organisms.
J Proteome Res. 2014 Feb 7;13(2):433-46. doi: 10.1021/pr400539j. Epub 2013 Dec 12.
9
The role of mitochondria from mature oocyte to viable blastocyst.
Obstet Gynecol Int. 2013;2013:183024. doi: 10.1155/2013/183024. Epub 2013 May 16.

本文引用的文献

1
Differential valine metabolism in adipose tissue of low and high fat-oxidizing obese subjects.
Proteomics Clin Appl. 2007 Oct;1(10):1306-15. doi: 10.1002/prca.200700049. Epub 2007 Sep 11.
2
4
Succinyl-CoA synthetase is a phosphate target for the activation of mitochondrial metabolism.
Biochemistry. 2009 Aug 4;48(30):7140-9. doi: 10.1021/bi900725c.
5
32P labeling of protein phosphorylation and metabolite association in the mitochondria matrix.
Methods Enzymol. 2009;457:63-80. doi: 10.1016/S0076-6879(09)05004-6.
6
Translocation of SenP5 from the nucleoli to the mitochondria modulates DRP1-dependent fission during mitosis.
J Biol Chem. 2009 Jun 26;284(26):17783-95. doi: 10.1074/jbc.M901902200. Epub 2009 May 1.
7
MAPL is a new mitochondrial SUMO E3 ligase that regulates mitochondrial fission.
EMBO Rep. 2009 Jul;10(7):748-54. doi: 10.1038/embor.2009.86. Epub 2009 May 1.
8
Use of (32)P to study dynamics of the mitochondrial phosphoproteome.
J Proteome Res. 2009 Jun;8(6):2679-95. doi: 10.1021/pr800913j.
9
In situ mitochondrial Ca2+ buffering differences of intact neurons and astrocytes from cortex and striatum.
J Biol Chem. 2009 Feb 20;284(8):5010-20. doi: 10.1074/jbc.M807459200. Epub 2008 Dec 22.
10
Proteomic changes associated with diabetes in the BB-DP rat.
Am J Physiol Endocrinol Metab. 2009 Mar;296(3):E422-32. doi: 10.1152/ajpendo.90352.2008. Epub 2008 Nov 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验