St George's - University of London, London, UK.
Diabet Med. 2010 Feb;27(2):203-9. doi: 10.1111/j.1464-5491.2009.02917.x.
Incorrect classification, diagnosis and coding of the type of diabetes may have implications for patient management and limit our ability to measure quality. The aim of the study was to measure the accuracy of diabetes diagnostic data and explore the scope for identifying errors.
We used two sets of anonymized routinely collected computer data: the pilot used Cutting out Needless Deaths Using Information Technology (CONDUIT) study data (n = 221 958), which we then validated using 100 practices from the Quality Improvement in Chronic Kidney Disease (QICKD) study (n = 760,588). We searched for contradictory diagnostic codes and also compatibility with prescription, demographic and laboratory test data. We classified errors as: misclassified-incorrect type of diabetes; misdiagnosed-where there was no evidence of diabetes; or miscoded-cases where it was difficult to infer the type of diabetes.
The standardized prevalence of diabetes was 5.0 and 4.0% in the CONDUIT and the QICKD data, respectively: 13.1% (n = 930) of CONDUIT and 14.8% (n = 4363) QICKD are incorrectly coded; 10.3% (n = 96) in CONDUIT and 26.2% (n = 1143) in QICKD are misclassified; nearly all of these cases are people classified with Type 1 diabetes who should be classified as Type 2. Approximately 5% of T2DM in both samples have no objective evidence to support a diagnosis of diabetes. Miscoding was present in approximately 7.8% of the CONDUIT and 6.1% of QICKD diabetes records.
The prevalence of miscoding, misclassification and misdiagnosis of diabetes is high and there is substantial scope for further improvement in diagnosis and data quality. Algorithms which identify likely misdiagnosis, misclassification and miscoding could be used to flag cases for review.
糖尿病类型的错误分类、诊断和编码可能会对患者管理产生影响,并限制我们衡量质量的能力。本研究的目的是衡量糖尿病诊断数据的准确性,并探讨识别错误的范围。
我们使用了两套匿名的常规计算机数据:试点使用了“使用信息技术消除不必要的死亡(CONDUIT)”研究数据(n = 221958),然后我们使用“慢性肾脏病质量改进(QICKD)”研究的 100 个实践对其进行了验证(n = 760588)。我们搜索了矛盾的诊断代码,并与处方、人口统计学和实验室测试数据进行了兼容性检查。我们将错误分类为:错误分类-错误的糖尿病类型;误诊-没有糖尿病证据;或编码错误-难以推断糖尿病类型的病例。
CONDUIT 和 QICKD 数据中的糖尿病标准化患病率分别为 5.0%和 4.0%:CONDUIT 中有 13.1%(n = 930)和 QICKD 中有 14.8%(n = 4363)被错误编码;CONDUIT 中有 10.3%(n = 96)和 QICKD 中有 26.2%(n = 1143)被错误分类;几乎所有这些病例都是被归类为 1 型糖尿病的人,而这些人应该被归类为 2 型糖尿病。大约 5%的 T2DM 在两个样本中都没有客观证据支持糖尿病的诊断。CONDUIT 中有约 7.8%和 QICKD 中有约 6.1%的糖尿病记录存在编码错误。
糖尿病的编码错误、错误分类和误诊的患病率很高,在诊断和数据质量方面还有很大的改进空间。可以使用识别可能误诊、错误分类和编码错误的算法来标记病例进行审查。