Suppr超能文献

蛋白质相互作用网络拓扑结构揭示了功能基因组学数据集中的黑色素生成调控网络组件。

Protein interaction network topology uncovers melanogenesis regulatory network components within functional genomics datasets.

作者信息

Ho Hsiang, Milenković Tijana, Memisević Vesna, Aruri Jayavani, Przulj Natasa, Ganesan Anand K

机构信息

Department of Biological Chemistry, University of California, Irvine, 92697-1700, USA.

出版信息

BMC Syst Biol. 2010 Jun 15;4:84. doi: 10.1186/1752-0509-4-84.

Abstract

BACKGROUND

RNA-mediated interference (RNAi)-based functional genomics is a systems-level approach to identify novel genes that control biological phenotypes. Existing computational approaches can identify individual genes from RNAi datasets that regulate a given biological process. However, currently available methods cannot identify which RNAi screen "hits" are novel components of well-characterized biological pathways known to regulate the interrogated phenotype. In this study, we describe a method to identify genes from RNAi datasets that are novel components of known biological pathways. We experimentally validate our approach in the context of a recently completed RNAi screen to identify novel regulators of melanogenesis.

RESULTS

In this study, we utilize a PPI network topology-based approach to identify targets within our RNAi dataset that may be components of known melanogenesis regulatory pathways. Our computational approach identifies a set of screen targets that cluster topologically in a human PPI network with the known pigment regulator Endothelin receptor type B (EDNRB). Validation studies reveal that these genes impact pigment production and EDNRB signaling in pigmented melanoma cells (MNT-1) and normal melanocytes.

CONCLUSIONS

We present an approach that identifies novel components of well-characterized biological pathways from functional genomics datasets that could not have been identified by existing statistical and computational approaches.

摘要

背景

基于RNA介导的干扰(RNAi)的功能基因组学是一种系统水平的方法,用于识别控制生物学表型的新基因。现有的计算方法可以从调节给定生物学过程的RNAi数据集中识别单个基因。然而,目前可用的方法无法确定哪些RNAi筛选“命中”是已知调节所研究表型的特征明确的生物学途径的新组成部分。在本研究中,我们描述了一种从RNAi数据集中识别作为已知生物学途径新组成部分的基因的方法。我们在最近完成的RNAi筛选的背景下通过实验验证了我们的方法,以识别黑素生成的新调节因子。

结果

在本研究中,我们利用基于蛋白质-蛋白质相互作用(PPI)网络拓扑的方法来识别我们RNAi数据集中可能是已知黑素生成调节途径组成部分的靶点。我们的计算方法识别出一组筛选靶点,这些靶点在人类PPI网络中与已知的色素调节因子内皮素B型受体(EDNRB)在拓扑结构上聚集在一起。验证研究表明,这些基因影响色素沉着性黑色素瘤细胞(MNT-1)和正常黑素细胞中的色素产生和EDNRB信号传导。

结论

我们提出了一种方法,可从功能基因组学数据集中识别特征明确的生物学途径的新组成部分,而现有统计和计算方法无法识别这些组成部分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8578/2904735/b0c7651a7120/1752-0509-4-84-1.jpg

相似文献

4
Integrated network analyses for functional genomic studies in cancer.
Semin Cancer Biol. 2013 Aug;23(4):213-8. doi: 10.1016/j.semcancer.2013.06.004. Epub 2013 Jun 27.
5
Revealing molecular mechanisms by integrating high-dimensional functional screens with protein interaction data.
PLoS Comput Biol. 2014 Sep 4;10(9):e1003801. doi: 10.1371/journal.pcbi.1003801. eCollection 2014 Sep.
6
Construction of Signaling Pathways with RNAi Data and Multiple Reference Networks.
IEEE/ACM Trans Comput Biol Bioinform. 2018 Jul-Aug;15(4):1079-1091. doi: 10.1109/TCBB.2017.2710129.
9
Large-scale signaling network reconstruction.
IEEE/ACM Trans Comput Biol Bioinform. 2012 Nov-Dec;9(6):1696-708. doi: 10.1109/TCBB.2012.128.

引用本文的文献

1
EpiGraph: an open-source platform to quantify epithelial organization.
Bioinformatics. 2020 Feb 15;36(4):1314-1316. doi: 10.1093/bioinformatics/btz683.
2
Distinctive Behaviors of Druggable Proteins in Cellular Networks.
PLoS Comput Biol. 2015 Dec 23;11(12):e1004597. doi: 10.1371/journal.pcbi.1004597. eCollection 2015 Dec.
3
Matter .
Netw Sci (Camb Univ Press). 2014 Aug;2(2):139-161. doi: 10.1017/nws.2014.13. Epub 2014 Sep 3.
4
Exploring the structure and function of temporal networks with dynamic graphlets.
Bioinformatics. 2015 Jun 15;31(12):i171-80. doi: 10.1093/bioinformatics/btv227.
6
Predicting disease associations via biological network analysis.
BMC Bioinformatics. 2014 Sep 17;15(1):304. doi: 10.1186/1471-2105-15-304.
7
Estimating the activity of transcription factors by the effect on their target genes.
Bioinformatics. 2014 Sep 1;30(17):i401-7. doi: 10.1093/bioinformatics/btu446.
8
Survey of network-based approaches to research of cardiovascular diseases.
Biomed Res Int. 2014;2014:527029. doi: 10.1155/2014/527029. Epub 2014 Mar 20.
9
Revealing missing parts of the interactome via link prediction.
PLoS One. 2014 Mar 3;9(3):e90073. doi: 10.1371/journal.pone.0090073. eCollection 2014.
10
Identification of human disease genes from interactome network using graphlet interaction.
PLoS One. 2014 Jan 22;9(1):e86142. doi: 10.1371/journal.pone.0086142. eCollection 2014.

本文引用的文献

2
RNAiCut: automated detection of significant genes from functional genomic screens.
Nat Methods. 2009 Jul;6(7):476-7. doi: 10.1038/nmeth0709-476.
4
Uncovering biological network function via graphlet degree signatures.
Cancer Inform. 2008;6:257-73. Epub 2008 Apr 14.
6
Differentiation-inducing activity of lupane triterpenes on a mouse melanoma cell line.
Cytotechnology. 2006 Nov;52(3):151-8. doi: 10.1007/s10616-007-9069-0. Epub 2007 Apr 20.
7
Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication.
Cell. 2008 Oct 3;135(1):49-60. doi: 10.1016/j.cell.2008.07.032.
8
Protein networks markedly improve prediction of subcellular localization in multiple eukaryotic species.
Nucleic Acids Res. 2008 Nov;36(20):e136. doi: 10.1093/nar/gkn619. Epub 2008 Oct 4.
9
Network-guided genetic screening: building, testing and using gene networks to predict gene function.
Brief Funct Genomic Proteomic. 2008 May;7(3):217-27. doi: 10.1093/bfgp/eln020. Epub 2008 Apr 29.
10
An integrated approach to inferring gene-disease associations in humans.
Proteins. 2008 Aug 15;72(3):1030-7. doi: 10.1002/prot.21989.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验