Department of Chemical Engineering, Stanford University, Stanford, California, USA.
Biophys J. 2010 Jun 16;98(12):2943-53. doi: 10.1016/j.bpj.2010.02.055.
Gene regulatory proteins find their target sites on DNA remarkably quickly; the experimental binding rate for lac repressor is orders-of-magnitude higher than predicted by free diffusion alone. It has been proposed that nonspecific binding aids the search by allowing proteins to slide and hop along DNA. We develop a reaction-diffusion theory of protein translocation that accounts for transport both on and off the strand and incorporates the physical conformation of DNA. For linear DNA modeled as a wormlike chain, the distribution of hops available to a protein exhibits long, power-law tails that make the long-time displacement along the strand superdiffusive. Our analysis predicts effective superdiffusion coefficients for given nonspecific binding and unbinding rate parameters. Translocation rate exhibits a maximum at intermediate values of the binding rate constant, while search efficiency is optimized at larger binding rate constant values. Thus, our theory predicts a region of values of the nonspecific binding and unbinding rate parameters that balance the protein translocation rate and the efficiency of the search. Published data for several proteins falls within this predicted region of parameter values.
基因调控蛋白在 DNA 上快速找到其靶位点;实验结合率 lac 阻遏物比单独的自由扩散预测值高出几个数量级。有人提出,非特异性结合通过允许蛋白质在 DNA 上滑动和跳跃来辅助搜索。我们开发了一种蛋白质易位的反应-扩散理论,该理论考虑了链上和链下的传输,并结合了 DNA 的物理构象。对于线性 DNA,模型为线状链,蛋白质可用的跳跃分布表现出长的幂律尾部,使沿链的长时间位移呈超扩散。我们的分析为给定的非特异性结合和非结合率参数预测了有效的超扩散系数。易位率在结合率常数的中间值处达到最大值,而搜索效率在较大的结合率常数值处得到优化。因此,我们的理论预测了一个非特异性结合和非结合率参数值的区域,该区域平衡了蛋白质易位率和搜索效率。几个蛋白质的发表数据落在这个预测的参数值区域内。