Suppr超能文献

非侵入性评估心房颤动期间心房波前模式的复杂性和稳定性。

Noninvasive assessment of the complexity and stationarity of the atrial wavefront patterns during atrial fibrillation.

机构信息

Laboratoire d'Informatique, Signaux et Systèmes de Sophia Antipolis (I3S), Université de Nice Sophia Antipolis/Centre Nationalde la Recherche Scientifique, Sophia Antipolis, 06903 France.

出版信息

IEEE Trans Biomed Eng. 2010 Sep;57(9):2147-57. doi: 10.1109/TBME.2010.2052619. Epub 2010 Jun 14.

Abstract

A novel automated approach to quantitatively evaluate the degree of spatio-temporal organization in the atrial activity (AA) during atrial fibrillation (AF) from surface recordings, obtained from body surface potential maps (BSPM), is presented. AA organization is assessed by measuring the reflection of the spatial complexity and temporal stationarity of the wavefront patterns propagating inside the atria on the surface ECG, by means of principal component analysis (PCA). Complexity and stationarity are quantified through novel parameters describing the structure of the mixing matrices derived by the PCA of the different AA segments across the BSPM recording. A significant inverse correlation between complexity and stationarity is highlighted by this analysis. The discriminatory power of the parameters in identifying different groups in the set of patients under study is also analyzed. The obtained results present analogies with earlier invasive studies in terms of number of significant components necessary to describe 95% of the variance in the AA (four for more organized AF, and eight for more disorganized AF). These findings suggest that automated analysis of AF organization exploiting spatial diversity in surface recordings is indeed possible, potentially leading to an improvement in clinical decision making and AF treatment.

摘要

提出了一种新颖的自动化方法,用于从体表电势图(BSPM)获得的房颤(AF)表面记录中定量评估心房活动(AA)的时空组织程度。通过主成分分析(PCA),通过测量在表面 ECG 上传播的波前模式的空间复杂性和时间稳定性的反射,评估 AA 组织。通过描述由 PCA 导出的不同 AA 段在 BSPM 记录上的混合矩阵的结构的新参数来量化复杂性和稳定性。该分析突出了复杂性和稳定性之间的反比关系。还分析了参数在识别研究对象组中不同组方面的辨别能力。所获得的结果在描述 AA 方差 95%所需的显著分量数方面与早期的侵入性研究具有相似性(对于更有序的 AF 为四个,对于更无序的 AF 为八个)。这些发现表明,利用表面记录中的空间多样性对 AF 组织进行自动分析是可行的,这可能会改善临床决策和 AF 治疗。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验