Suppr超能文献

脊髓损伤的干细胞治疗。

Stem cell therapies for spinal cord injury.

机构信息

MGH-HMS Center for Nervous System Repair, Harvard Medical School, 50 Blossom Street, Boston, MA 02114, USA.

出版信息

Nat Rev Neurol. 2010 Jul;6(7):363-72. doi: 10.1038/nrneurol.2010.73. Epub 2010 Jun 15.

Abstract

Stem cell therapy is a potential treatment for spinal cord injury (SCI), and a variety of different stem cell types have been evaluated in animal models and humans with SCI. No consensus exists regarding the type of stem cell, if any, that will prove to be effective therapeutically. Most data suggest that no single therapy will be sufficient to overcome all the biological complications caused by SCI. Rationales for therapeutic use of stem cells for SCI include replacement of damaged neurons and glial cells, secretion of trophic factors, regulation of gliosis and scar formation, prevention of cyst formation, and enhancement of axon elongation. Most therapeutic approaches that use stem cells involve implantation of these cells into the spinal cord. The attendant risks of stem cell therapy for SCI--including tumor formation, or abnormal circuit formation leading to dysfunction--must be weighed against the potential benefits of this approach. This Review will examine the biological effects of SCI, the opportunities for stem cell treatment, and the types of stem cells that might be used therapeutically. The limited information available on the possible benefits of stem cell therapy to humans will also be discussed.

摘要

干细胞治疗是脊髓损伤 (SCI) 的一种潜在治疗方法,各种不同类型的干细胞已在 SCI 的动物模型和人类中进行了评估。关于哪种(如果有的话)干细胞将被证明在治疗上有效,尚无共识。大多数数据表明,没有单一的治疗方法足以克服 SCI 引起的所有生物学并发症。将干细胞用于 SCI 的治疗的基本原理包括替代受损的神经元和神经胶质细胞、分泌神经营养因子、调节神经胶质增生和瘢痕形成、预防囊肿形成以及增强轴突伸长。大多数使用干细胞的治疗方法都涉及将这些细胞植入脊髓。必须权衡干细胞治疗 SCI 的风险——包括肿瘤形成或导致功能障碍的异常电路形成——与这种方法的潜在益处。这篇综述将探讨 SCI 的生物学影响、干细胞治疗的机会以及可能用于治疗的干细胞类型。还将讨论有关干细胞治疗对人类可能带来的益处的有限信息。

相似文献

1
Stem cell therapies for spinal cord injury.
Nat Rev Neurol. 2010 Jul;6(7):363-72. doi: 10.1038/nrneurol.2010.73. Epub 2010 Jun 15.
2
Combined transplantation of neural stem cells and olfactory ensheathing cells for the repair of spinal cord injuries.
Med Hypotheses. 2007;69(6):1234-7. doi: 10.1016/j.mehy.2007.04.011. Epub 2007 Jun 4.
4
Plasticity and regeneration in the injured spinal cord after cell transplantation therapy.
Prog Brain Res. 2017;231:33-56. doi: 10.1016/bs.pbr.2016.12.007. Epub 2017 Jan 17.
5
Neuroinflammation and Scarring After Spinal Cord Injury: Therapeutic Roles of MSCs on Inflammation and Glial Scar.
Front Immunol. 2021 Dec 2;12:751021. doi: 10.3389/fimmu.2021.751021. eCollection 2021.
6
Recent therapeutic strategies for spinal cord injury treatment: possible role of stem cells.
Neurosurg Rev. 2012 Jul;35(3):293-311; discussion 311. doi: 10.1007/s10143-012-0385-2. Epub 2012 Apr 27.
7
Biomaterial-supported MSC transplantation enhances cell-cell communication for spinal cord injury.
Stem Cell Res Ther. 2021 Jan 7;12(1):36. doi: 10.1186/s13287-020-02090-y.
8
A Combinatorial Approach to Induce Sensory Axon Regeneration into the Dorsal Root Avulsed Spinal Cord.
Stem Cells Dev. 2017 Jul 15;26(14):1065-1077. doi: 10.1089/scd.2017.0019. Epub 2017 May 31.
10
Early graft of neural precursors in spinal cord compression reduces glial cyst and improves function.
J Neurosurg Spine. 2011 Jul;15(1):97-106. doi: 10.3171/2011.1.SPINE10607. Epub 2011 Apr 1.

引用本文的文献

3
Revisiting the unobtrusive role of exogenous stem cells beyond neural circuits replacement in spinal cord injury repair.
Theranostics. 2025 Jan 2;15(4):1552-1569. doi: 10.7150/thno.103033. eCollection 2025.
4
Bioelectronic Medicines-A Novel Approach of Therapeutics in Current Epoch.
Curr Pharm Des. 2025;31(3):163-178. doi: 10.2174/0113816128326489240827100537.
5
Conclusive demonstration of iatrogenic Alzheimer's disease transmission in a model of stem cell transplantation.
Stem Cell Reports. 2024 Apr 9;19(4):456-468. doi: 10.1016/j.stemcr.2024.02.012. Epub 2024 Mar 28.
6
Advancements in Spinal Cord Injury Repair: Insights from Dental-Derived Stem Cells.
Biomedicines. 2024 Mar 19;12(3):683. doi: 10.3390/biomedicines12030683.
7
Biomedical applications of stimuli-responsive "smart" interpenetrating polymer network hydrogels.
Mater Today Bio. 2024 Feb 10;25:100998. doi: 10.1016/j.mtbio.2024.100998. eCollection 2024 Apr.
10
Transplantation of neuron-inducing grafts embedding positively charged gold nanoparticles for the treatment of spinal cord injury.
Bioeng Transl Med. 2022 Apr 18;7(3):e10326. doi: 10.1002/btm2.10326. eCollection 2022 Sep.

本文引用的文献

2
BMPR1a and BMPR1b signaling exert opposing effects on gliosis after spinal cord injury.
J Neurosci. 2010 Feb 3;30(5):1839-55. doi: 10.1523/JNEUROSCI.4459-09.2010.
3
Promoting directional axon growth from neural progenitors grafted into the injured spinal cord.
J Neurosci Res. 2010 May 1;88(6):1182-92. doi: 10.1002/jnr.22288.
7
Inducible pluripotent stem cells: not quite ready for prime time?
Curr Opin Organ Transplant. 2010 Feb;15(1):61-7. doi: 10.1097/MOT.0b013e3283337196.
8
Transplantation of bone marrow mesenchymal stem cells reduces lesion volume and induces axonal regrowth of injured spinal cord.
Neuropathology. 2010 Jun;30(3):205-17. doi: 10.1111/j.1440-1789.2009.01063.x. Epub 2009 Oct 21.
9
PTPsigma is a receptor for chondroitin sulfate proteoglycan, an inhibitor of neural regeneration.
Science. 2009 Oct 23;326(5952):592-6. doi: 10.1126/science.1178310. Epub 2009 Oct 15.
10
Olfactory mucosal autografts and rehabilitation for chronic traumatic spinal cord injury.
Neurorehabil Neural Repair. 2010 Jan;24(1):10-22. doi: 10.1177/1545968309347685. Epub 2009 Sep 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验