文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Biomedical applications of stimuli-responsive "smart" interpenetrating polymer network hydrogels.

作者信息

Wu Jiuping, Xue Wu, Yun Zhihe, Liu Qinyi, Sun Xinzhi

机构信息

Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.

Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, China.

出版信息

Mater Today Bio. 2024 Feb 10;25:100998. doi: 10.1016/j.mtbio.2024.100998. eCollection 2024 Apr.


DOI:10.1016/j.mtbio.2024.100998
PMID:38390342
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10882133/
Abstract

In recent years, owing to the ongoing advancements in polymer materials, hydrogels have found increasing applications in the biomedical domain, notably in the realm of stimuli-responsive "smart" hydrogels. Nonetheless, conventional single-network stimuli-responsive "smart" hydrogels frequently exhibit deficiencies, including low mechanical strength, limited biocompatibility, and extended response times. In response, researchers have addressed these challenges by introducing a second network to create stimuli-responsive "smart" Interpenetrating Polymer Network (IPN) hydrogels. The mechanical strength of the material can be significantly improved due to the topological entanglement and physical interactions within the interpenetrating structure. Simultaneously, combining different network structures enhances the biocompatibility and stimulus responsiveness of the gel, endowing it with unique properties such as cell adhesion, conductivity, hemostasis/antioxidation, and color-changing capabilities. This article primarily aims to elucidate the stimulus-inducing factors in stimuli-responsive "smart" IPN hydrogels, the impact of the gels on cell behaviors and their biomedical application range. Additionally, we also offer an in-depth exposition of their categorization, mechanisms, performance characteristics, and related aspects. This review furnishes a comprehensive assessment and outlook for the advancement of stimuli-responsive "smart" IPN hydrogels within the biomedical arena. We believe that, as the biomedical field increasingly demands novel materials featuring improved mechanical properties, robust biocompatibility, and heightened stimulus responsiveness, stimuli-responsive "smart" IPN hydrogels will hold substantial promise for wide-ranging applications in this domain.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cfc/10882133/8dd687f8fd6a/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cfc/10882133/ac13cb74e7cb/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cfc/10882133/d33a465a2cee/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cfc/10882133/a39666a24039/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cfc/10882133/f18edd5bae53/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cfc/10882133/aab2405a2af7/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cfc/10882133/b14f263a5722/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cfc/10882133/3f37a792a506/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cfc/10882133/a59023c748b2/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cfc/10882133/539dbf4040a9/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cfc/10882133/5715ceb22d7b/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cfc/10882133/a2eb9372fc26/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cfc/10882133/8dd687f8fd6a/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cfc/10882133/ac13cb74e7cb/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cfc/10882133/d33a465a2cee/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cfc/10882133/a39666a24039/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cfc/10882133/f18edd5bae53/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cfc/10882133/aab2405a2af7/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cfc/10882133/b14f263a5722/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cfc/10882133/3f37a792a506/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cfc/10882133/a59023c748b2/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cfc/10882133/539dbf4040a9/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cfc/10882133/5715ceb22d7b/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cfc/10882133/a2eb9372fc26/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cfc/10882133/8dd687f8fd6a/gr11.jpg

相似文献

[1]
Biomedical applications of stimuli-responsive "smart" interpenetrating polymer network hydrogels.

Mater Today Bio. 2024-2-10

[2]
Enhancing Biopolymer Hydrogel Functionality through Interpenetrating Networks.

Trends Biotechnol. 2021-5

[3]
Development of visible-light responsive and mechanically enhanced "smart" UCST interpenetrating network hydrogels.

Soft Matter. 2017-12-20

[4]
Responsive Acrylamide-Based Hydrogels: Advances in Interpenetrating Polymer Structures.

Gels. 2024-6-21

[5]
Mechanical properties of PNIPAM based hydrogels: A review.

Mater Sci Eng C Mater Biol Appl. 2017-1-1

[6]
Polyelectrolyte and Antipolyelectrolyte Effects for Dual Salt-Responsive Interpenetrating Network Hydrogels.

Biomacromolecules. 2019-8-19

[7]
Stimuli-Responsive Crystalline Smart Materials: From Rational Design and Fabrication to Applications.

Acc Chem Res. 2022-4-5

[8]
Design Rationale for Stimuli-Responsive, Semi-interpenetrating Polymer Network Hydrogels-A Quantitative Approach.

Macromol Rapid Commun. 2020-11

[9]
Towards superior biopolymer gels by enabling interpenetrating network structures: A review on types, applications, and gelation strategies.

Adv Colloid Interface Sci. 2024-3

[10]
Smart Macroporous IPN Hydrogels Responsive to pH, Temperature, and Ionic Strength: Synthesis, Characterization, and Evaluation of Controlled Release of Drugs.

ACS Appl Mater Interfaces. 2016-5-4

引用本文的文献

[1]
Synthesis of Temperature/pH Dual-Responsive Double-Crosslinked Hydrogel on Medical Titanium Alloy Surface.

Gels. 2025-6-9

[2]
Nanoemulsion Hydrogel Delivery System of L.: In Silico Design, In Vitro Antimicrobial-Toxicological Profiling, and In Vivo Wound-Healing Evaluation.

Gels. 2025-6-3

[3]
Advances in Composite Stimuli-Responsive Hydrogels for Wound Healing: Mechanisms and Applications.

Gels. 2025-5-31

[4]
Injectable Biopolymer-Based Hydrogels: A Next-Generation Platform for Minimally Invasive Therapeutics.

Gels. 2025-5-23

[5]
Stimulus-responsive cellulose hydrogels in biomedical applications and challenges.

Mater Today Bio. 2025-4-30

[6]
Genetic and bioactive functionalization of bioinks for 3D bioprinting.

Bioprocess Biosyst Eng. 2025-5-20

[7]
Intraocular injectable hydrogels for the delivery of cells and nanoparticles.

Mater Today Bio. 2025-4-12

[8]
Smart Poly(N-isopropylacrylamide)-Based Hydrogels: A Tour D'horizon of Biomedical Applications.

Gels. 2025-3-15

[9]
Recent applications of stimulus-responsive smart hydrogels for osteoarthritis therapy.

Front Bioeng Biotechnol. 2025-2-17

[10]
Reinforcement of Dextran Methacrylate-Based Hydrogel, Semi-IPN, and IPN with Multivalent Crosslinkers.

Gels. 2024-11-27

本文引用的文献

[1]
Organohydrogel Actuators with Adjustable Stimulus Responsiveness for On-Demand Morphing.

ACS Appl Mater Interfaces. 2023-3-29

[2]
Advances in Oral Drug Delivery Systems: Challenges and Opportunities.

Pharmaceutics. 2023-2-1

[3]
Recent strategies to develop pH-sensitive injectable hydrogels.

Biomater Sci. 2023-3-14

[4]
Design of polyacrylamide grafted sesbania gum-mediated pH-responsive IPN-based microbeads for delivery of diclofenac sodium: In-vitro-in-vivo characterizations.

Int J Biol Macromol. 2023-3-1

[5]
Pre-clinical evaluation of thermosensitive decellularized adipose tissue/platelet-rich plasma interpenetrating polymer network hydrogel for wound healing.

Mater Today Bio. 2022-11-18

[6]
A hydrogel-based biosensor for stable detection of glucose.

Biosens Bioelectron. 2023-2-1

[7]
Reversible Shape-Shifting of an Ionic Strength Responsive Hydrogel Enabled by Programmable Network Anisotropy.

ACS Appl Mater Interfaces. 2022-9-7

[8]
Customizing nano-chitosan for sustainable drug delivery.

J Control Release. 2022-10

[9]
A cellulose nanofibril-reinforced hydrogel with robust mechanical, self-healing, pH-responsive and antibacterial characteristics for wound dressing applications.

J Nanobiotechnology. 2022-7-6

[10]
Conductive Collagen-Based Hydrogel Combined With Electrical Stimulation to Promote Neural Stem Cell Proliferation and Differentiation.

Front Bioeng Biotechnol. 2022-6-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索