Hu Jane, Bok Dean
Jules Stein Eye Institute and Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
Methods Mol Biol. 2010;652:55-73. doi: 10.1007/978-1-60327-325-1_2.
The retinal pigment epithelium (RPE) occupies a strategic position within the eye, given its location between the neurosensory retina and the vascular bed (choroid) that nourishes the photoreceptor cells (rods and cones). Among the many attributes of this versatile monolayer of cells is its unique ability to convert vitamin A (retinol) into the prosthetic group (11-cis-retinal) for the rod and cone opsins, the photopigments essential for vision. It does so by absorbing retinol via a receptor-mediated process that involves the interaction of a carrier protein secreted by the liver, retinol-binding protein (RBP), and a receptor/channel that is the gene product of STRA6 (stimulated by retinoic acid 6). Following its uptake through the basolateral plasma membrane of the RPE, retinol encounters a brigade of binding proteins, membrane-bound receptors, and enzymes that mediate its multi-step conversion to 11-cis-retinal and the transport of this visual chromophore to the light-sensitive photoreceptor cell outer segment, the portion of the cell that houses the phototransduction cascade. This process is iterative, repeating itself via the retinoid visual cycle. Most of the human genes that code for this cohort of proteins carry disease-causing mutations in humans. The consequences of these mutations range in severity from relatively mild dysfunction such as congenital stationary night blindness to total blindness. The RPE, although post-mitotic in situ, is capable of proliferation when removed from its native milieu. This offers one the opportunity to study the retinoid visual cycle in modular form, providing insights into this intriguing process in health and disease. This chapter describes a cell culture method whereby the entire visual cycle can be created in vitro.
视网膜色素上皮(RPE)在眼睛中占据着关键位置,因为它位于神经感觉视网膜和滋养光感受器细胞(视杆细胞和视锥细胞)的血管床(脉络膜)之间。在这个多功能单层细胞的众多特性中,其独特能力是将维生素A(视黄醇)转化为视杆和视锥视蛋白的辅基(11-顺式视黄醛),视蛋白是视觉所必需的光色素。它通过受体介导的过程吸收视黄醇来实现这一点,该过程涉及肝脏分泌的载体蛋白视黄醇结合蛋白(RBP)与STRA6(视黄酸刺激基因6)基因产物的受体/通道之间的相互作用。视黄醇通过RPE的基底外侧质膜被摄取后,会遇到一系列结合蛋白、膜结合受体和酶,它们介导视黄醇向11-顺式视黄醛的多步转化,并将这种视觉发色团运输到光敏感的光感受器细胞外段,即细胞中容纳光转导级联反应的部分。这个过程是迭代的,通过类视黄醇视觉循环不断重复。大多数编码这组蛋白质的人类基因在人类中携带致病突变。这些突变的后果严重程度不一,从相对轻微的功能障碍如先天性静止性夜盲到完全失明。RPE虽然在原位是有丝分裂后细胞,但从其天然环境中移除后能够增殖。这为以模块化形式研究类视黄醇视觉循环提供了机会,有助于深入了解健康和疾病状态下这一有趣的过程。本章描述了一种细胞培养方法,通过该方法可以在体外构建完整的视觉循环。