Kolesnikov Alexander V, Maeda Akiko, Tang Peter H, Imanishi Yoshikazu, Palczewski Krzysztof, Kefalov Vladimir J
Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA.
J Physiol. 2015 Nov 15;593(22):4923-41. doi: 10.1113/JP271285. Epub 2015 Oct 18.
This study explores the molecular mechanisms that regulate the recycling of chromophore required for pigment regeneration in mammalian cones. We report that two chromophore binding proteins, retinol dehydrogenase 8 (RDH8) and photoreceptor-specific ATP-binding cassette transporter (ABCA4) accelerate the dark adaptation of cones, first, directly, by facilitating the processing of chromophore in cones, and second, indirectly, by accelerating the turnover of chromophore in rods, which is then recycled and delivered to both rods and cones. Preventing competition with the rods by knocking out rhodopsin accelerated cone dark adaptation, demonstrating the interplay between rod and cone pigment regeneration driven by the retinal pigment epithelium (RPE). This novel interdependence of rod and cone pigment regeneration should be considered when developing therapies targeting the recycling of chromophore for rods, and evaluating residual cone function should be a critical test for such regimens targeting the RPE.
Rapid recycling of visual chromophore and regeneration of the visual pigment are critical for the continuous function of mammalian cone photoreceptors in daylight vision. However, the molecular mechanisms modulating the supply of visual chromophore to cones have remained unclear. Here we explored the roles of two chromophore-binding proteins, retinol dehydrogenase 8 (RDH8) and photoreceptor-specific ATP-binding cassette transporter 4 (ABCA4), in dark adaptation of mammalian cones. We report that young adult RDH8/ABCA4-deficient mice have normal M-cone morphology but reduced visual acuity and photoresponse amplitudes. Notably, the deletion of RDH8 and ABCA4 suppressed the dark adaptation of M-cones driven by both the intraretinal visual cycle and the retinal pigmented epithelium (RPE) visual cycle. This delay can be caused by two separate mechanisms: direct involvement of RDH8 and ABCA4 in cone chromophore processing, and an indirect effect from the delayed recycling of chromophore by the RPE due to its slow release from RDH8/ABCA4-deficient rods. Intriguingly, our data suggest that RDH8 could also contribute to the oxidation of cis-retinoids in cones, a key reaction of the retina visual cycle. Finally, we dissected the roles of rod photoreceptors and RPE for dark adaptation of M-cones. We found that rods suppress, whereas RPE promotes, cone dark adaptation. Thus, therapeutic approaches targeting the RPE visual cycle could have adverse effects on the function of cones, making the evaluation of residual cone function a critical test for regimens targeting the RPE.
本研究探讨了调节哺乳动物视锥细胞色素再生所需发色团循环利用的分子机制。我们报告称,两种发色团结合蛋白,视黄醇脱氢酶8(RDH8)和光感受器特异性ATP结合盒转运蛋白(ABCA4),通过促进视锥细胞中发色团的加工,直接加速视锥细胞的暗适应;其次,通过加速视杆细胞中发色团的周转,间接加速视锥细胞的暗适应,然后发色团被循环利用并输送到视杆细胞和视锥细胞。通过敲除视紫红质来防止与视杆细胞的竞争,可加速视锥细胞的暗适应,这表明视网膜色素上皮(RPE)驱动的视杆细胞和视锥细胞色素再生之间存在相互作用。在开发针对视杆细胞发色团循环利用的疗法时,应考虑视杆细胞和视锥细胞色素再生这种新的相互依存关系,并且评估视锥细胞的残余功能应该是此类针对RPE的治疗方案的关键测试。
视觉发色团的快速循环利用和视色素的再生对于哺乳动物视锥光感受器在明视觉中的持续功能至关重要。然而,调节视锥细胞视觉发色团供应的分子机制仍不清楚。在这里,我们探讨了两种发色团结合蛋白,视黄醇脱氢酶8(RDH8)和光感受器特异性ATP结合盒转运蛋白4(ABCA4)在哺乳动物视锥细胞暗适应中的作用。我们报告称,年轻成年RDH8/ABCA4基因缺陷小鼠的M视锥细胞形态正常,但视力和光反应幅度降低。值得注意的是,RDH8和ABCA4的缺失抑制了由视网膜内视觉循环和视网膜色素上皮(RPE)视觉循环驱动的M视锥细胞的暗适应。这种延迟可能由两种不同机制引起:RDH8和ABCA4直接参与视锥细胞发色团的加工,以及由于发色团从RDH8/ABCA4缺陷视杆细胞中缓慢释放,导致RPE对发色团的循环利用延迟而产生的间接影响。有趣的是,我们的数据表明,RDH8也可能有助于视锥细胞中顺式视黄醛的氧化,这是视网膜视觉循环的关键反应。最后,我们剖析了视杆光感受器和RPE对视锥细胞暗适应的作用。我们发现,视杆细胞抑制视锥细胞的暗适应,而RPE则促进视锥细胞的暗适应。因此,针对RPE视觉循环的治疗方法可能对视锥细胞的功能产生不利影响,这使得评估视锥细胞的残余功能成为针对RPE的治疗方案的关键测试。