Suppr超能文献

视网膜色素上皮和视网膜中类视黄醇异构酶活性的分析。

Analysis of the retinoid isomerase activities in the retinal pigment epithelium and retina.

作者信息

Travis Gabriel H, Kaylor Joanna, Yuan Quan

机构信息

Jules Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA, USA.

出版信息

Methods Mol Biol. 2010;652:329-39. doi: 10.1007/978-1-60327-325-1_19.

Abstract

Light sensitivity in the vertebrate retina is mediated by the opsin visual pigments inside rod and cone photoreceptor cells. These pigments consist of a G protein-coupled receptor and the photo-sensitive ligand, 11-cis-retinaldehyde (11-cis-RAL). Absorption of a photon by an opsin pigment induces isomerization of the 11-cis-RAL chromophore to all-trans-retinaldehyde (all-trans-RAL), rendering the pigment insensitive to light. The bleached opsin regains light sensitivity by recombining with another 11-cis-RAL. The vertebrate eye contains a biochemical mechanism for regenerating 11-cis-RAL chromophore from all-trans-RAL, called the visual cycle. The visual cycle takes place within cells of the retinal pigment epithelium (RPE). A second visual cycle also appears to be present in Müller glial cells of the retina. A critical step in the regeneration of 11-cis-RAL chromophore is thermal re-isomerization to the 11-cis configuration of an all-trans-retinyl ester (all-trans-RE) or an all-trans-retinol (all-trans-ROL). In RPE cells, this step is carried out by an enzyme called Rpe65 isomerase. This chapter provides methods for assaying Rpe65 isomerase. Although Rpe65 utilizes an all-trans-RE such as all-trans-retinyl palmitate (all-trans-RP) as substrate, it can be assayed in RPE homogenates by providing all-trans-ROL substrate and allowing the endogenous lecithin:retinol acyl transferase (LRAT) to synthesize all-trans-REs using fatty acids from phosphatidylcholine in the membranes. Alternatively, all-trans-RP can be provided directly as substrate, although this requires the isomerase reaction to be carried out in the presence of detergent, since fatty-acyl esters of all-trans-ROL are insoluble. Methods are provided in this chapter for assaying Rpe65 in RPE homogenates with both all-trans-ROL and all-trans-RP substrates. A second visual cycle appears to be present in the retinas of cone-dominant species such as chicken. This retinal pathway may augment the RPE to provide 11-cis-RAL to cone photoreceptors under conditions of bright light where the rate of opsin photoisomerization is high. The isomerase in this pathway (isomerase-2) utilizes all-trans-ROL and palmitoyl coenzyme A (palm CoA) as substrates to synthesize 11-cis-retinyl palmitate (11-cis-RP). Isomerase-2 appears to be present in Müller cells but has not yet been identified. Methods are provided in this chapter for assaying isomerase-2 in chicken retina homogenates.

摘要

脊椎动物视网膜的光敏感性由视杆和视锥光感受器细胞内的视蛋白视觉色素介导。这些色素由一种G蛋白偶联受体和光敏配体11-顺式视黄醛(11-cis-RAL)组成。视蛋白色素吸收一个光子会诱导11-cis-RAL发色团异构化为全反式视黄醛(all-trans-RAL),使该色素对光不敏感。漂白后的视蛋白通过与另一个11-cis-RAL重新结合而恢复光敏感性。脊椎动物的眼睛含有一种从全反式视黄醛再生11-cis-RAL发色团的生化机制,称为视觉循环。视觉循环发生在视网膜色素上皮(RPE)细胞内。视网膜的穆勒神经胶质细胞中似乎也存在第二个视觉循环。11-cis-RAL发色团再生的关键步骤是全反式视黄酯(all-trans-RE)或全反式视黄醇(all-trans-ROL)热异构化为11-顺式构型。在RPE细胞中,这一步骤由一种名为Rpe65异构酶的酶完成。本章提供了检测Rpe65异构酶的方法。尽管Rpe65利用全反式视黄酯如全反式视黄醇棕榈酸酯(all-trans-RP)作为底物,但可以通过提供全反式视黄醇底物并让内源性卵磷脂:视黄醇酰基转移酶(LRAT)利用膜中磷脂酰胆碱的脂肪酸合成全反式视黄酯,在RPE匀浆中进行检测。或者,可以直接提供全反式视黄醇棕榈酸酯作为底物,不过这需要在去污剂存在的情况下进行异构酶反应,因为全反式视黄醇的脂肪酰酯不溶。本章提供了在RPE匀浆中用全反式视黄醇和全反式视黄醇棕榈酸酯底物检测Rpe65的方法。在鸡等视锥细胞占主导的物种的视网膜中似乎存在第二个视觉循环。在强光条件下,视蛋白光异构化速率很高,这条视网膜途径可能增强RPE向视锥光感受器提供11-cis-RAL的能力。这条途径中的异构酶(异构酶-2)利用全反式视黄醇和棕榈酰辅酶A(palm CoA)作为底物合成11-顺式视黄醇棕榈酸酯(11-cis-RP)。异构酶-2似乎存在于穆勒细胞中,但尚未被鉴定出来。本章提供了在鸡视网膜匀浆中检测异构酶-2的方法。

相似文献

1
Analysis of the retinoid isomerase activities in the retinal pigment epithelium and retina.
Methods Mol Biol. 2010;652:329-39. doi: 10.1007/978-1-60327-325-1_19.
3
Identification of the 11-cis-specific retinyl-ester synthase in retinal Müller cells as multifunctional O-acyltransferase (MFAT).
Proc Natl Acad Sci U S A. 2014 May 20;111(20):7302-7. doi: 10.1073/pnas.1319142111. Epub 2014 May 5.
5
Role of LRAT on the retinoid isomerase activity and membrane association of Rpe65.
J Biol Chem. 2007 Jul 20;282(29):20915-24. doi: 10.1074/jbc.M701432200. Epub 2007 May 15.
6
cis Retinol oxidation regulates photoreceptor access to the retina visual cycle and cone pigment regeneration.
J Physiol. 2016 Nov 15;594(22):6753-6765. doi: 10.1113/JP272831. Epub 2016 Aug 2.
7
Diacylglycerol O-acyltransferase type-1 synthesizes retinyl esters in the retina and retinal pigment epithelium.
PLoS One. 2015 May 14;10(5):e0125921. doi: 10.1371/journal.pone.0125921. eCollection 2015.
9
Retinyl esters are the substrate for isomerohydrolase.
Biochemistry. 2003 Feb 25;42(7):2229-38. doi: 10.1021/bi026911y.

引用本文的文献

1
The cell biology of the retinal pigment epithelium.
Prog Retin Eye Res. 2020 Feb 24:100846. doi: 10.1016/j.preteyeres.2020.100846.
2
Visual cycle proteins: Structure, function, and roles in human retinal disease.
J Biol Chem. 2018 Aug 24;293(34):13016-13021. doi: 10.1074/jbc.AW118.003228. Epub 2018 Jul 12.
3
Recent advances in the dark adaptation investigations.
Int J Ophthalmol. 2015 Dec 18;8(6):1245-52. doi: 10.3980/j.issn.2222-3959.2015.06.31. eCollection 2015.
4
Retina, retinol, retinal and the natural history of vitamin A as a light sensor.
Nutrients. 2012 Dec 19;4(12):2069-96. doi: 10.3390/nu4122069.
5
Cultured Müller cells from mammals can synthesize and accumulate retinyl esters.
Exp Eye Res. 2012 Aug;101:56-9. doi: 10.1016/j.exer.2012.05.004. Epub 2012 May 24.

本文引用的文献

1
Intra-retinal visual cycle required for rapid and complete cone dark adaptation.
Nat Neurosci. 2009 Mar;12(3):295-302. doi: 10.1038/nn.2258. Epub 2009 Feb 1.
5
Identification of the RPE65 protein in mammalian cone photoreceptors.
Invest Ophthalmol Vis Sci. 2002 May;43(5):1604-9.
6
Immunocytochemical localization of two retinoid-binding proteins in vertebrate retina.
J Cell Biol. 1983 Sep;97(3):703-12. doi: 10.1083/jcb.97.3.703.
7
Early receptor potential of the isolated frog (Rana pipiens) retina.
Vision Res. 1967 Nov;7(11):837-45. doi: 10.1016/0042-6989(67)90004-1.
8
Dark adaptation of the frog's rods.
Vision Res. 1973 Oct;13(10):1953-63. doi: 10.1016/0042-6989(73)90066-7.
9
Recovery of cone receptor activity in the frog's isolated retina.
Vision Res. 1973 Oct;13(10):1943-51. doi: 10.1016/0042-6989(73)90065-5.
10
Regeneration of the green-rod pigment in the isolated frog retina.
Vision Res. 1973 Mar;13(3):527-34. doi: 10.1016/0042-6989(73)90022-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验