Department of Geography, Kansas State University, Manhattan, KS 66506, USA.
Division of Biology, Kansas State University, Manhattan, KS 66506, USA.
New Phytol. 2010 Sep;187(4):1135-1145. doi: 10.1111/j.1469-8137.2010.03322.x. Epub 2010 Jun 14.
*Humans are increasing both the deposition of reactive nitrogen (N) and concentrations of atmospheric CO(2) on Earth, but the combined effects on terrestrial ecosystems are not clear. In the absence of historical records, it is difficult to know if N availability is currently increasing or decreasing on regional scales. *To determine the nature and timing of past changes in grassland ecosystem dynamics, we measured the composition of stable carbon (C) and N isotopes in leaf tissue from 545 herbarium specimens of 24 vascular plant species collected in Kansas, USA from 1876 to 2008. We also parameterized a simple model of the terrestrial N cycle coupled with a stable isotope simulator to constrain processes consistent with observed patterns. *A prolonged decline in foliar N concentrations began in 1926, while a prolonged decline in foliar delta(15)N values began in 1940. Changes in the difference between foliar and atmospheric C isotopes reveal slightly increased photosynthetic water use efficiency since 1876. *The declines in foliar N concentrations and foliar delta(15)N suggest declining N availability in these grasslands during the 20th century despite decades of anthropogenic N deposition. Our results are consistent with progressive-nitrogen-limitation-type hypotheses where declines in N availability are driven by increased ecosystem N storage as a result of increased atmospheric CO(2).
人类正在增加地球上活性氮(N)的沉积和大气 CO2 的浓度,但对陆地生态系统的综合影响尚不清楚。由于缺乏历史记录,很难知道 N 的可用性在区域尺度上是在增加还是减少。为了确定草原生态系统动态过去变化的性质和时间,我们测量了 1876 年至 2008 年期间从美国堪萨斯州收集的 24 种维管植物 545 个标本的叶片组织中稳定碳(C)和 N 同位素的组成。我们还参数化了陆地 N 循环与稳定同位素模拟器的简单模型,以约束与观察到的模式一致的过程。叶片 N 浓度的长期下降始于 1926 年,而叶片 delta(15)N 值的长期下降始于 1940 年。叶片和大气 C 同位素差异的变化表明,自 1876 年以来,光合作用的水分利用效率略有提高。尽管数十年来人为 N 沉积,但叶片 N 浓度和叶片 delta(15)N 的下降表明这些草原在 20 世纪 N 可利用性下降。我们的结果与渐进性氮限制假说一致,该假说认为,由于大气 CO2 增加导致生态系统 N 储存增加,N 可利用性下降。