Suppr超能文献

5'-甲基硫代腺苷/S-腺苷同型半胱氨酸核苷酶底物特异性的机制。

Mechanism of substrate specificity in 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidases.

机构信息

Research Institute, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada.

出版信息

J Struct Biol. 2011 Jan;173(1):86-98. doi: 10.1016/j.jsb.2010.06.006. Epub 2010 Jun 8.

Abstract

5'-Methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) nucleosidase (MTAN) plays a key role in the methionine-recycling pathway of bacteria and plants. Despite extensive structural and biochemical studies, the molecular mechanism of substrate specificity for MTAN remains an outstanding question. Bacterial MTANs show comparable efficiency in hydrolyzing MTA and SAH, while the plant enzymes select preferentially for MTA, with either no or significantly reduced activity towards SAH. Bacterial and plant MTANs show significant conservation in the overall structure, and the adenine- and ribose-binding sites. The observation of a more constricted 5'-alkylthio binding site in Arabidopsis thalianaAtMTAN1 and AtMTAN2, two plant MTAN homologues, led to the hypothesis that steric hindrance may play a role in substrate selection in plant MTANs. We show using isothermal titration calorimetry that SAH binds to both Escherichia coli MTAN (EcMTAN) and AtMTAN1 with comparable micromolar affinity. To understand why AtMTAN1 can bind but not hydrolyze SAH, we determined the structure of the protein-SAH complex at 2.2Å resolution. The lack of catalytic activity appears to be related to the enzyme's inability to bind the substrate in a catalytically competent manner. The role of dynamics in substrate selection was also examined by probing the amide proton exchange rates of EcMTAN and AtMTAN1 via deuterium-hydrogen exchange coupled mass spectrometry. These results correlate with the B factors of available structures and the thermodynamic parameters associated with substrate binding, and suggest a higher level of conformational flexibility in the active site of EcMTAN. Our results implicate dynamics as an important factor in substrate selection in MTAN.

摘要

5'-甲基硫代腺苷/S-腺苷同型半胱氨酸核苷酶(MTAN)在细菌和植物的蛋氨酸循环途径中发挥着关键作用。尽管进行了广泛的结构和生化研究,但 MTAN 的底物特异性的分子机制仍然是一个悬而未决的问题。细菌 MTAN 水解 MTA 和 SAH 的效率相当,而植物酶则优先选择 MTA,对 SAH 的活性要么没有,要么显著降低。细菌和植物 MTAN 在整体结构和腺嘌呤和核糖结合位点上具有显著的保守性。拟南芥 AtMTAN1 和 AtMTAN2 这两个植物 MTAN 同源物中观察到更狭窄的 5'-烷基硫结合位点,这导致了这样一种假设,即空间位阻可能在植物 MTAN 中起作用。我们使用等温滴定量热法表明,SAH 与大肠杆菌 MTAN(EcMTAN)和 AtMTAN1 的结合具有相当的微摩尔亲和力。为了了解为什么 AtMTAN1 可以结合但不能水解 SAH,我们确定了该蛋白-SAH 复合物在 2.2Å 分辨率下的结构。缺乏催化活性似乎与酶无法以催化有效方式结合底物有关。通过氘-氢交换偶联质谱法探测 EcMTAN 和 AtMTAN1 的酰胺质子交换速率,还研究了动力学在底物选择中的作用。这些结果与可用结构的 B 因子和与底物结合相关的热力学参数相关联,并表明 EcMTAN 活性位点的构象灵活性更高。我们的结果表明,动力学是 MTAN 中底物选择的一个重要因素。

相似文献

1
Mechanism of substrate specificity in 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidases.
J Struct Biol. 2011 Jan;173(1):86-98. doi: 10.1016/j.jsb.2010.06.006. Epub 2010 Jun 8.
2
Molecular determinants of substrate specificity in plant 5'-methylthioadenosine nucleosidases.
J Mol Biol. 2008 Apr 18;378(1):112-28. doi: 10.1016/j.jmb.2008.01.088. Epub 2008 Feb 8.
4
Biochemical and structural characterization of 5'-methylthioadenosine nucleosidases from Arabidopsis thaliana.
Biochem Biophys Res Commun. 2009 Apr 17;381(4):619-24. doi: 10.1016/j.bbrc.2009.02.106. Epub 2009 Feb 26.
5
Structure of Staphylococcus aureus 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2008 May 1;64(Pt 5):343-50. doi: 10.1107/S1744309108009275. Epub 2008 Apr 30.
7
Characterization of 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidases from Borrelia burgdorferi: Antibiotic targets for Lyme disease.
Biochim Biophys Acta Gen Subj. 2020 Jan;1864(1):129455. doi: 10.1016/j.bbagen.2019.129455. Epub 2019 Oct 31.
9
Crystal structure and biochemical studies of Brucella melitensis 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase.
Biochem Biophys Res Commun. 2014 Apr 18;446(4):965-70. doi: 10.1016/j.bbrc.2014.03.045. Epub 2014 Mar 20.

引用本文的文献

1
Mechanisms of Copper Toxicity and Tolerance in the Aquatic Moss .
Plants (Basel). 2023 Oct 18;12(20):3607. doi: 10.3390/plants12203607.
3
Pseudomonas syringae type III effector HopAF1 suppresses plant immunity by targeting methionine recycling to block ethylene induction.
Proc Natl Acad Sci U S A. 2016 Jun 21;113(25):E3577-86. doi: 10.1073/pnas.1606322113. Epub 2016 Jun 6.
4
Pfs promotes autolysis-dependent release of eDNA and biofilm formation in Staphylococcus aureus.
Med Microbiol Immunol. 2015 Apr;204(2):215-26. doi: 10.1007/s00430-014-0357-y. Epub 2014 Sep 4.
6
Recycling of methylthioadenosine is essential for normal vascular development and reproduction in Arabidopsis.
Plant Physiol. 2012 Apr;158(4):1728-44. doi: 10.1104/pp.111.191072. Epub 2012 Feb 16.

本文引用的文献

1
Phaser crystallographic software.
J Appl Crystallogr. 2007 Aug 1;40(Pt 4):658-674. doi: 10.1107/S0021889807021206. Epub 2007 Jul 13.
2
Biochemical and structural characterization of 5'-methylthioadenosine nucleosidases from Arabidopsis thaliana.
Biochem Biophys Res Commun. 2009 Apr 17;381(4):619-24. doi: 10.1016/j.bbrc.2009.02.106. Epub 2009 Feb 26.
3
Do enthalpy and entropy distinguish first in class from best in class?
Drug Discov Today. 2008 Oct;13(19-20):869-74. doi: 10.1016/j.drudis.2008.07.005. Epub 2008 Aug 26.
5
Modest stabilization by most hydrogen-bonded side-chain interactions in membrane proteins.
Nature. 2008 Jun 26;453(7199):1266-70. doi: 10.1038/nature06977. Epub 2008 May 25.
6
Structure of Staphylococcus aureus 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase.
Acta Crystallogr Sect F Struct Biol Cryst Commun. 2008 May 1;64(Pt 5):343-50. doi: 10.1107/S1744309108009275. Epub 2008 Apr 30.
7
Molecular determinants of substrate specificity in plant 5'-methylthioadenosine nucleosidases.
J Mol Biol. 2008 Apr 18;378(1):112-28. doi: 10.1016/j.jmb.2008.01.088. Epub 2008 Feb 8.
10
Conformational analysis of Epac activation using amide hydrogen/deuterium exchange mass spectrometry.
J Biol Chem. 2007 Nov 2;282(44):32256-63. doi: 10.1074/jbc.M706231200. Epub 2007 Sep 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验