Research Institute, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada.
J Struct Biol. 2011 Jan;173(1):86-98. doi: 10.1016/j.jsb.2010.06.006. Epub 2010 Jun 8.
5'-Methylthioadenosine/S-adenosylhomocysteine (MTA/SAH) nucleosidase (MTAN) plays a key role in the methionine-recycling pathway of bacteria and plants. Despite extensive structural and biochemical studies, the molecular mechanism of substrate specificity for MTAN remains an outstanding question. Bacterial MTANs show comparable efficiency in hydrolyzing MTA and SAH, while the plant enzymes select preferentially for MTA, with either no or significantly reduced activity towards SAH. Bacterial and plant MTANs show significant conservation in the overall structure, and the adenine- and ribose-binding sites. The observation of a more constricted 5'-alkylthio binding site in Arabidopsis thalianaAtMTAN1 and AtMTAN2, two plant MTAN homologues, led to the hypothesis that steric hindrance may play a role in substrate selection in plant MTANs. We show using isothermal titration calorimetry that SAH binds to both Escherichia coli MTAN (EcMTAN) and AtMTAN1 with comparable micromolar affinity. To understand why AtMTAN1 can bind but not hydrolyze SAH, we determined the structure of the protein-SAH complex at 2.2Å resolution. The lack of catalytic activity appears to be related to the enzyme's inability to bind the substrate in a catalytically competent manner. The role of dynamics in substrate selection was also examined by probing the amide proton exchange rates of EcMTAN and AtMTAN1 via deuterium-hydrogen exchange coupled mass spectrometry. These results correlate with the B factors of available structures and the thermodynamic parameters associated with substrate binding, and suggest a higher level of conformational flexibility in the active site of EcMTAN. Our results implicate dynamics as an important factor in substrate selection in MTAN.
5'-甲基硫代腺苷/S-腺苷同型半胱氨酸核苷酶(MTAN)在细菌和植物的蛋氨酸循环途径中发挥着关键作用。尽管进行了广泛的结构和生化研究,但 MTAN 的底物特异性的分子机制仍然是一个悬而未决的问题。细菌 MTAN 水解 MTA 和 SAH 的效率相当,而植物酶则优先选择 MTA,对 SAH 的活性要么没有,要么显著降低。细菌和植物 MTAN 在整体结构和腺嘌呤和核糖结合位点上具有显著的保守性。拟南芥 AtMTAN1 和 AtMTAN2 这两个植物 MTAN 同源物中观察到更狭窄的 5'-烷基硫结合位点,这导致了这样一种假设,即空间位阻可能在植物 MTAN 中起作用。我们使用等温滴定量热法表明,SAH 与大肠杆菌 MTAN(EcMTAN)和 AtMTAN1 的结合具有相当的微摩尔亲和力。为了了解为什么 AtMTAN1 可以结合但不能水解 SAH,我们确定了该蛋白-SAH 复合物在 2.2Å 分辨率下的结构。缺乏催化活性似乎与酶无法以催化有效方式结合底物有关。通过氘-氢交换偶联质谱法探测 EcMTAN 和 AtMTAN1 的酰胺质子交换速率,还研究了动力学在底物选择中的作用。这些结果与可用结构的 B 因子和与底物结合相关的热力学参数相关联,并表明 EcMTAN 活性位点的构象灵活性更高。我们的结果表明,动力学是 MTAN 中底物选择的一个重要因素。