Suppr超能文献

布鲁氏菌 5'-甲基硫代腺苷/S-腺苷同型半胱氨酸核苷酶的晶体结构和生化研究。

Crystal structure and biochemical studies of Brucella melitensis 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase.

机构信息

National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.

National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.

出版信息

Biochem Biophys Res Commun. 2014 Apr 18;446(4):965-70. doi: 10.1016/j.bbrc.2014.03.045. Epub 2014 Mar 20.

Abstract

The prokaryotic 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidase (MTAN) catalyzes the irreversible cleavage of the glycosidic bond in 5'-methylthioadenosine (MTA) and S-adenosylhomocysteine (SAH), a process that plays a key role in several metabolic pathways. Its absence in all mammalian species has implicated this enzyme as a promising target for antimicrobial drug design. Here, we report the crystal structure of BmMTAN in complex with its product adenine at a resolution of 2.6 Å determined by single-wavelength anomalous dispersion method. 11 key residues were mutated for kinetic characterization. Mutations of Tyr134 and Met144 resulted in the largest overall increase in Km, whereas mutagenesis of residues Glu18, Glu145 and Asp168 completely abolished activity. Glu145 and Asp168 were identified as active site residues essential for catalysis. The catalytic mechanism and implications of this structure for broad-based antibiotic design are discussed.

摘要

原核 5'-甲基硫代腺苷/S-腺苷同型半胱氨酸核苷酶(MTAN)催化 5'-甲基硫代腺苷(MTA)和 S-腺苷同型半胱氨酸(SAH)糖苷键的不可逆裂解,这一过程在几种代谢途径中起着关键作用。由于所有哺乳动物物种中都不存在这种酶,因此该酶被认为是一种有前途的抗菌药物设计靶点。在这里,我们通过单波长反常分散法确定了 BmMTAN 与产物腺嘌呤复合物的晶体结构,分辨率为 2.6Å。对 11 个关键残基进行了突变以进行动力学表征。突变 Tyr134 和 Met144 导致 Km 总体增加最大,而突变残基 Glu18、Glu145 和 Asp168 则完全使活性丧失。鉴定出 Glu145 和 Asp168 是催化所必需的活性位点残基。讨论了该结构对广泛抗生素设计的催化机制和意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验