Suppr超能文献

鉴定基因组位置、生物通路和疾病之间的调控关系。

Identifying regulatory relationships among genomic loci, biological pathways, and disease.

机构信息

Seoul National University Biomedical Informatics (SNUBI), Seoul National University College of Medicine, 28 Yongon-dong Chongno-gu, Seoul 110799, Republic of Korea.

出版信息

Artif Intell Med. 2010 Jul;49(3):161-5. doi: 10.1016/j.artmed.2010.03.001. Epub 2010 May 31.

Abstract

OBJECTIVE

Elucidating genetic factors of complex diseases is one of the most important challenges in biomedical research. Recently, a genetical genomics approach of mapping genotype to transcripts has been used in complex disease analysis. This approach treats messenger ribonucleic acid (mRNA) expression as a quantitative trait and identifies putative regulatory loci for the expression of an individual gene. However, the single-gene approach could not detect single nucleotide polymorphisms (SNP's) associated with the concerted activity of multiple genes. Since complex diseases result from the interactions of multiple genes, it is important to consider associations between genotype and multiple gene expression.

METHODS AND MATERIALS

We developed the differential allelic co-expression (DACE) that identifies regulatory loci that affect the inter-correlation structure of multiple genes or a gene set. We applied DACE to two benchmark datasets: the normal human lymphoblastoid cell dataset and the glioblastoma dataset. These datasets consist of both SNPs and mRNA expression profiles for each sample. When analyzing the lymphoblastoid cell dataset, principal component analysis (PCA) was compared with the DACE test.

RESULTS

While PCA identified associations found by single-gene analysis, the DACE test detected associations not identified by the single-gene approach. Using the DACE test, seven putative regulatory loci of immune-related pathways were identified in lymphoblastoid cells after controlling for family-wise error rate. In the glioblastoma dataset, DACE identified 4582 SNPs associated with six pathways. In 231 of the 4582 SNPs, patient survival length was correlated significantly with the SNP genotype. This finding suggests that our integrative approach may provide a biological explanation for the putative relationship between sequence level variation and disease outcome, via expression of a functional pathway.

CONCLUSION

The DACE test shows promise for finding regulatory relationships between a genomic locus and sets of genes which may be related to disease outcome.

摘要

目的

阐明复杂疾病的遗传因素是生物医学研究中最重要的挑战之一。最近,一种将基因型映射到转录本的遗传基因组学方法已被用于复杂疾病分析。这种方法将信使核糖核酸(mRNA)表达视为一种定量特征,并确定个体基因表达的潜在调节基因座。然而,单基因方法无法检测与多个基因协同活性相关的单核苷酸多态性(SNP)。由于复杂疾病是由多个基因相互作用引起的,因此考虑基因型与多个基因表达之间的关联非常重要。

方法和材料

我们开发了差异等位基因共表达(DACE)方法,该方法可识别影响多个基因或基因集相互关联结构的调节基因座。我们将 DACE 应用于两个基准数据集:正常人类淋巴母细胞数据集和神经胶质瘤数据集。这些数据集均包含每个样本的 SNP 和 mRNA 表达谱。在分析淋巴母细胞数据集时,将主成分分析(PCA)与 DACE 测试进行了比较。

结果

虽然 PCA 识别了单基因分析发现的关联,但 DACE 测试检测到了单基因方法未识别的关联。使用 DACE 测试,在控制了家族错误率后,在淋巴母细胞中鉴定出了 7 个与免疫相关途径有关的潜在调节基因座。在神经胶质瘤数据集中,DACE 鉴定出了与 6 条途径相关的 4582 个 SNP。在 4582 个 SNP 中的 231 个 SNP 中,患者的生存时间与 SNP 基因型显著相关。这一发现表明,我们的综合方法可能通过表达功能途径,为序列水平变异与疾病结果之间的潜在关系提供生物学解释。

结论

DACE 测试在发现基因组位点与可能与疾病结果相关的基因集之间的调节关系方面具有广阔的前景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验