Suppr超能文献

建立清醒状态下小鼠的在体脑成像方法。

Establishment of in vivo brain imaging method in conscious mice.

机构信息

Functional Probe Research Laboratory, RIKEN Center for Molecular Imaging Science, Chuo-ku, Kobe, Japan.

出版信息

J Nucl Med. 2010 Jul;51(7):1068-75. doi: 10.2967/jnumed.110.075184. Epub 2010 Jun 16.

Abstract

UNLABELLED

In vivo imaging, such as PET, requires restriction of body movements and is generally conducted under sedation by anesthetic agents in studies using laboratory animals. Because anesthetics reduce neural activity and metabolism, physiologic neural functions are difficult to assess in animal PET studies. Therefore, use of an appropriate method in conscious animals is important and is a practical requirement for physiologic in vivo brain imaging studies. Here, we established an in vivo imaging system for conscious mice to reveal the physiologic regional cerebral glucose metabolic rate (rCMRglu) with (18)F-FDG PET.

METHODS

We first developed a head holder to enable brain PET of a conscious mouse. To obtain optimal rCMRglu, we examined the effects of physical and psychologic stresses caused by ambient temperature, intravenous injection, and acclimation to the apparatus and immobile state. Finally, quantitative kinetic analysis was performed for rCMRglu based on a 2-tissue-compartment model with an input function of arterial blood sampling under both conscious and anesthetized (1.5% isoflurane) conditions.

RESULTS

Increasing the ambient temperature increased uptake of (18)F-FDG in the brain significantly while reducing the uptake in skeletal muscle and brown adipose tissue that was caused by shivering. The reduction of brain (18)F-FDG uptake caused by tail holding and manual injection was significantly ameliorated by the use of an automated slow injection. Although brain uptake of (18)F-FDG varied at the first session of PET, uptake at the second and subsequent sessions was stable, even after long-term acclimation. After these beneficial changes, brain uptake of (18)F-FDG improved significantly, to approximately 260% above the preconditioned state, which is comparable with that obtained in mice that have been allowed to move freely about their home cages. Quantitative kinetic analyses revealed that isoflurane anesthesia lowered rCMRglu in the cerebral cortex, striatum, thalamus, and cerebellum by 66%, 59%, 62%, and 22%, respectively, mainly by reducing the k(3) value, a rate constant for phosphorylation by hexokinase.

CONCLUSION

To our knowledge, this is the first study to report quantitative kinetic analysis of rCMRglu in mice that have been conscious throughout PET. This investigation will open avenues for research into in vivo functional brain molecular imaging in both normal and genetically manipulated mice.

摘要

未加标签

体内成像,如正电子发射断层扫描(PET),需要限制身体运动,并且通常在使用实验室动物的研究中通过麻醉剂进行镇静。因为麻醉剂会降低神经活动和代谢,所以在动物 PET 研究中,生理神经功能很难评估。因此,在清醒动物中使用适当的方法很重要,这是生理体内脑成像研究的实际要求。在这里,我们建立了一个用于清醒小鼠的体内成像系统,以使用(18)F-FDG PET 显示生理区域脑葡萄糖代谢率(rCMRglu)。

方法

我们首先开发了一个头部固定器,以实现清醒小鼠的脑部 PET。为了获得最佳的 rCMRglu,我们检查了环境温度、静脉注射以及适应仪器和固定状态引起的身体和心理压力的影响。最后,我们在清醒和麻醉(1.5%异氟烷)条件下,基于动脉血取样的输入函数,对 2 组织隔室模型进行了定量动力学分析。

结果

增加环境温度会显著增加大脑对(18)F-FDG 的摄取,同时减少因颤抖引起的骨骼肌和棕色脂肪组织的摄取。尾巴固定和手动注射引起的大脑(18)F-FDG 摄取减少,通过使用自动缓慢注射得到显著改善。尽管在 PET 的第一次会话中大脑对(18)F-FDG 的摄取会有所变化,但在第二次和随后的会话中,即使经过长期适应,摄取仍然稳定。在这些有益的变化之后,大脑对(18)F-FDG 的摄取得到了显著改善,达到了预处理状态的 260%以上,这与允许在其自家笼子中自由活动的小鼠获得的摄取相当。定量动力学分析表明,异氟烷麻醉会使大脑皮层、纹状体、丘脑和小脑的 rCMRglu 分别降低 66%、59%、62%和 22%,这主要是通过降低磷酸化的速率常数 k3 来实现的,该常数由己糖激酶决定。

结论

据我们所知,这是第一项在整个 PET 过程中都使小鼠保持清醒的情况下报告 rCMRglu 定量动力学分析的研究。这项研究将为正常和遗传操作的小鼠体内功能脑分子成像研究开辟新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验