Suppr超能文献

血凝素裂解位点的修饰控制了神经嗜性 H1N1 流感病毒的毒力。

Modifications to the hemagglutinin cleavage site control the virulence of a neurotropic H1N1 influenza virus.

机构信息

Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA.

出版信息

J Virol. 2010 Sep;84(17):8683-90. doi: 10.1128/JVI.00797-10. Epub 2010 Jun 16.

Abstract

A key determinant of influenza virus pathogenesis is mutation in the proteolytic cleavage site of the hemagglutinin (HA). Typically, low-pathogenicity forms of influenza virus are cleaved by trypsin-like proteases, whereas highly pathogenic forms are cleaved by different proteases (e.g., furin). Influenza virus A/WSN/33 (WSN) is a well-studied H1N1 strain that is trypsin independent in vitro and has the ability to replicate in mouse brain. Previous studies have indicated that mutations in the neuraminidase (NA) gene allow the recruitment of an alternate protease (plasminogen/plasmin) for HA activation. In this study we have identified an additional mutation in the P2 position of the WSN HA cleavage site (S328Y) that appears to control virus spread in a plasmin-dependent manner. We reconstructed recombinant WSN viruses containing tyrosine (Y), phenylalanine (F), or serine (S) in the P2 position of the cleavage site. The Y328 and F328 viruses allowed plaque formation in the absence of trypsin, whereas the S328 virus was unable to form plaques under these conditions. In mice, Y328 and F328 viruses were able to efficiently spread following intracranial inoculation; in contrast, the S328 virus showed only limited infection of mouse brain. Following intranasal inoculation, all viruses could replicate efficiently, but with Y328 and F328 viruses showing a limited growth defect. We also show that wild-type HA (Y328) was more efficiently cleaved by plasmin than S328 HA. Our studies form the foundation for a more complete understanding of the molecular determinants of influenza virus pathogenesis and the role of the plasminogen/plasmin system in activating HA.

摘要

流感病毒发病机制的一个关键决定因素是血凝素(HA)蛋白裂解位点的突变。通常,低致病性形式的流感病毒由胰蛋白酶样蛋白酶切割,而高致病性形式则由不同的蛋白酶(如弗林蛋白酶)切割。流感病毒 A/WSN/33(WSN)是一种研究得很好的 H1N1 株,它在体外不依赖于胰蛋白酶,并且有在鼠脑中复制的能力。以前的研究表明,神经氨酸酶(NA)基因的突变允许招募替代蛋白酶(纤溶酶原/纤溶酶)来激活 HA。在这项研究中,我们在 WSN HA 裂解位点的 P2 位置发现了一个额外的突变(S328Y),它似乎以依赖纤溶酶的方式控制病毒的传播。我们构建了含有 P2 位置的酪氨酸(Y)、苯丙氨酸(F)或丝氨酸(S)的 WSN HA 重组病毒。Y328 和 F328 病毒在没有胰蛋白酶的情况下允许形成噬菌斑,而 S328 病毒在这些条件下无法形成噬菌斑。在小鼠中,Y328 和 F328 病毒在脑内接种后能够有效地传播;相比之下,S328 病毒在这种情况下只表现出有限的感染。经鼻腔接种后,所有病毒都能有效地复制,但 Y328 和 F328 病毒的复制能力有限。我们还表明,野生型 HA(Y328)比 S328 HA 更有效地被纤溶酶切割。我们的研究为更全面地了解流感病毒发病机制的分子决定因素以及纤溶酶原/纤溶酶系统在激活 HA 中的作用奠定了基础。

相似文献

1
Modifications to the hemagglutinin cleavage site control the virulence of a neurotropic H1N1 influenza virus.
J Virol. 2010 Sep;84(17):8683-90. doi: 10.1128/JVI.00797-10. Epub 2010 Jun 16.
5
Influenza virus activating host proteases: Identification, localization and inhibitors as potential therapeutics.
Eur J Cell Biol. 2015 Jul-Sep;94(7-9):375-83. doi: 10.1016/j.ejcb.2015.05.013. Epub 2015 Jun 1.
6
Proteolytic activation of the 1918 influenza virus hemagglutinin.
J Virol. 2009 Apr;83(7):3200-11. doi: 10.1128/JVI.02205-08. Epub 2009 Jan 21.
8
A novel activation mechanism of avian influenza virus H9N2 by furin.
J Virol. 2014 Feb;88(3):1673-83. doi: 10.1128/JVI.02648-13. Epub 2013 Nov 20.
9
Hemagglutinins of Avian Influenza Viruses Are Proteolytically Activated by TMPRSS2 in Human and Murine Airway Cells.
J Virol. 2021 Sep 27;95(20):e0090621. doi: 10.1128/JVI.00906-21. Epub 2021 Jul 28.

引用本文的文献

1
Loss of FCoV-23 spike domain 0 enhances fusogenicity and entry kinetics.
Nature. 2025 Jul 9. doi: 10.1038/s41586-025-09155-z.
2
Understanding Influenza.
Methods Mol Biol. 2025;2890:1-26. doi: 10.1007/978-1-0716-4326-6_1.
5
A novel bat coronavirus with a polybasic furin-like cleavage site.
Virol Sin. 2023 Jun;38(3):344-350. doi: 10.1016/j.virs.2023.04.009. Epub 2023 May 2.
7
Insight towards the effect of the multi basic cleavage site of SARS-CoV-2 spike protein on cellular proteases.
Virus Res. 2022 Sep;318:198845. doi: 10.1016/j.virusres.2022.198845. Epub 2022 Jun 6.
8
MicroRNAs affect GPCR and Ion channel genes needed for influenza replication.
J Gen Virol. 2021 Nov;102(11). doi: 10.1099/jgv.0.001691.
9
Drug repositioning of Clopidogrel or Triamterene to inhibit influenza virus replication in vitro.
PLoS One. 2021 Oct 29;16(10):e0259129. doi: 10.1371/journal.pone.0259129. eCollection 2021.

本文引用的文献

1
Acute necrotizing encephalopathy in a child with H1N1 influenza infection.
Pediatr Radiol. 2010 Feb;40(2):200-5. doi: 10.1007/s00247-009-1487-z. Epub 2009 Dec 18.
2
A STUDY OF THE NEUROTROPIC TENDENCY IN STRAINS OF THE VIRUS OF EPIDEMIC INFLUENZA.
J Exp Med. 1940 Nov 30;72(6):717-28. doi: 10.1084/jem.72.6.717.
3
Type II transmembrane serine proteases in cancer and viral infections.
Trends Mol Med. 2009 Jul;15(7):303-12. doi: 10.1016/j.molmed.2009.05.003. Epub 2009 Jul 4.
4
Emergence and pandemic potential of swine-origin H1N1 influenza virus.
Nature. 2009 Jun 18;459(7249):931-9. doi: 10.1038/nature08157.
6
Proteolytic activation of the 1918 influenza virus hemagglutinin.
J Virol. 2009 Apr;83(7):3200-11. doi: 10.1128/JVI.02205-08. Epub 2009 Jan 21.
7
New insights into the molecular mechanisms of the fibrinolytic system.
J Thromb Haemost. 2009 Jan;7(1):4-13. doi: 10.1111/j.1538-7836.2008.03220.x. Epub 2008 Nov 8.
8
Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme.
Crit Rev Biochem Mol Biol. 2008 May-Jun;43(3):189-219. doi: 10.1080/10409230802058320.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验