Suppr超能文献

h 电流是调节 BCM 样突触学习规则中滑动修正阈值的候选机制。

The h current is a candidate mechanism for regulating the sliding modification threshold in a BCM-like synaptic learning rule.

机构信息

Center for Learning and Memory, The University of Texas, Austin, Texas 78712-0805, USA.

出版信息

J Neurophysiol. 2010 Aug;104(2):1020-33. doi: 10.1152/jn.01129.2009. Epub 2010 Jun 16.

Abstract

Hebbian synaptic plasticity acts as a positive feedback mechanism and can destabilize a neuronal network unless concomitant homeostatic processes that counterbalance this instability are activated. Within a Bienenstock-Cooper-Munro (BCM)-like plasticity framework, such compensation is achieved through a modification threshold that slides in an activity-dependent fashion. Although the BCM-like plasticity framework has been a useful formulation to understand synaptic plasticity and metaplasticity, a mechanism for the activity-dependent regulation of this modification threshold has remained an open question. In this simulation study based on CA1 pyramidal cells, we use a modification of the calcium-dependent hypothesis proposed elsewhere and show that a change in the hyperpolarization-activated, nonspecific-cation h current is capable of shifting the modification threshold. Based on the direction of such a shift in relation to changes in the h current, and supported by previous experimental results, we argue that the h current fits the requirements for an activity-dependent regulator of this modification threshold. Additionally, using the same framework, we show that multiple voltage- and ligand-gated ion channels present in a neuronal compartment can regulate the modification threshold through complex interactions among themselves. Our results underscore the heavy mutual interdependence of synaptic and intrinsic properties/plasticity in regulating learning and homeostasis in single neurons and their networks under both physiological and pathological brain states.

摘要

Hebbian 突触可塑性充当正反馈机制,如果不激活伴随的、平衡这种不稳定性的同型平衡过程,则可能破坏神经网络。在类似于 Bienenstock-Cooper-Munro (BCM) 的可塑性框架内,这种补偿是通过以活动依赖性方式滑动的修改阈值来实现的。尽管类似于 BCM 的可塑性框架是理解突触可塑性和超可塑性的有用公式,但活动依赖性调节这种修改阈值的机制仍然是一个悬而未决的问题。在这项基于 CA1 锥体神经元的模拟研究中,我们使用了别处提出的钙依赖性假说的一种变体,并表明去极化激活的非特异性阳离子 h 电流的变化能够改变修改阈值。基于这种变化与 h 电流变化之间的关系,以及先前的实验结果,我们认为 h 电流符合作为这种修改阈值的活动依赖性调节剂的要求。此外,使用相同的框架,我们表明单个神经元及其网络在生理和病理脑状态下,存在于神经元隔室中的多个电压和配体门控离子通道可以通过它们之间的复杂相互作用来调节修改阈值。我们的研究结果强调了在调节学习和同型平衡方面,突触和内在特性/可塑性之间的高度相互依存性。

相似文献

1
The h current is a candidate mechanism for regulating the sliding modification threshold in a BCM-like synaptic learning rule.
J Neurophysiol. 2010 Aug;104(2):1020-33. doi: 10.1152/jn.01129.2009. Epub 2010 Jun 16.
2
A calcium-dependent plasticity rule for HCN channels maintains activity homeostasis and stable synaptic learning.
PLoS One. 2013;8(2):e55590. doi: 10.1371/journal.pone.0055590. Epub 2013 Feb 4.
3
Effects of HCN2 Mutations on Dendritic Excitability and Synaptic Plasticity: A Computational Study.
Neuroscience. 2019 Dec 15;423:148-161. doi: 10.1016/j.neuroscience.2019.10.019. Epub 2019 Nov 1.
4
Analogous synaptic plasticity profiles emerge from disparate channel combinations.
J Neurosci. 2015 Mar 18;35(11):4691-705. doi: 10.1523/JNEUROSCI.4223-14.2015.
5
LTD, LTP, and the sliding threshold for long-term synaptic plasticity.
Hippocampus. 1996;6(1):35-42. doi: 10.1002/(SICI)1098-1063(1996)6:1<35::AID-HIPO7>3.0.CO;2-6.
6
Synaptic plasticity, metaplasticity and BCM theory.
Bratisl Lek Listy. 2002;103(4-5):137-43.
8
STDP rule endowed with the BCM sliding threshold accounts for hippocampal heterosynaptic plasticity.
J Comput Neurosci. 2007 Apr;22(2):129-33. doi: 10.1007/s10827-006-0002-x.
9
Priming-induced shift in synaptic plasticity in the rat hippocampus.
J Neurophysiol. 1999 Oct;82(4):2024-8. doi: 10.1152/jn.1999.82.4.2024.
10
Control of Excitation/Inhibition Balance in a Hippocampal Circuit by Calcium Sensor Protein Regulation of Presynaptic Calcium Channels.
J Neurosci. 2018 May 2;38(18):4430-4440. doi: 10.1523/JNEUROSCI.0022-18.2018. Epub 2018 Apr 13.

引用本文的文献

2
Astrocytes enhance plasticity response during reversal learning.
Commun Biol. 2024 Jul 12;7(1):852. doi: 10.1038/s42003-024-06540-8.
4
Dendritic effects of tDCS insights from a morphologically realistic model neuron.
iScience. 2024 Feb 15;27(3):109230. doi: 10.1016/j.isci.2024.109230. eCollection 2024 Mar 15.
5
The enigmatic HCN channels: A cellular neurophysiology perspective.
Proteins. 2025 Jan;93(1):72-92. doi: 10.1002/prot.26643. Epub 2023 Nov 19.
6
Heterogeneous off-target impact of ion-channel deletion on intrinsic properties of hippocampal model neurons that self-regulate calcium.
Front Cell Neurosci. 2023 Oct 10;17:1241450. doi: 10.3389/fncel.2023.1241450. eCollection 2023.
9
Metaplasticity framework for cross-modal synaptic plasticity in adults.
Front Synaptic Neurosci. 2023 Jan 6;14:1087042. doi: 10.3389/fnsyn.2022.1087042. eCollection 2022.
10
Ion-channel degeneracy and heterogeneities in the emergence of complex spike bursts in CA3 pyramidal neurons.
J Physiol. 2023 Aug;601(15):3297-3328. doi: 10.1113/JP283539. Epub 2022 Oct 23.

本文引用的文献

1
Structural plasticity can produce metaplasticity.
PLoS One. 2009 Nov 30;4(11):e8062. doi: 10.1371/journal.pone.0008062.
2
3
The pre/post LTP debate.
Neuron. 2009 Aug 13;63(3):281-4. doi: 10.1016/j.neuron.2009.07.020.
4
Hyperpolarization-activated cation channels: from genes to function.
Physiol Rev. 2009 Jul;89(3):847-85. doi: 10.1152/physrev.00029.2008.
5
New sites of action for GIRK and SK channels.
Nat Rev Neurosci. 2009 Jul;10(7):475-80. doi: 10.1038/nrn2668.
6
G protein-activated inwardly rectifying potassium channels mediate depotentiation of long-term potentiation.
Proc Natl Acad Sci U S A. 2009 Jan 13;106(2):635-40. doi: 10.1073/pnas.0811685106. Epub 2008 Dec 31.
7
Kinase-dependent modification of dendritic excitability after long-term potentiation.
J Physiol. 2009 Jan 15;587(1):115-25. doi: 10.1113/jphysiol.2008.158816. Epub 2008 Nov 10.
8
Silent synapses and the emergence of a postsynaptic mechanism for LTP.
Nat Rev Neurosci. 2008 Nov;9(11):813-25. doi: 10.1038/nrn2501. Epub 2008 Oct 15.
9
Downregulation of dendritic I(h) in CA1 pyramidal neurons after LTP.
J Neurosci. 2008 Aug 20;28(34):8635-43. doi: 10.1523/JNEUROSCI.1411-08.2008.
10
Signaling mechanisms linking neuronal activity to gene expression and plasticity of the nervous system.
Annu Rev Neurosci. 2008;31:563-90. doi: 10.1146/annurev.neuro.31.060407.125631.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验