Center for Learning and Memory, The University of Texas, Austin, Texas 78712-0805, USA.
J Neurophysiol. 2010 Aug;104(2):1020-33. doi: 10.1152/jn.01129.2009. Epub 2010 Jun 16.
Hebbian synaptic plasticity acts as a positive feedback mechanism and can destabilize a neuronal network unless concomitant homeostatic processes that counterbalance this instability are activated. Within a Bienenstock-Cooper-Munro (BCM)-like plasticity framework, such compensation is achieved through a modification threshold that slides in an activity-dependent fashion. Although the BCM-like plasticity framework has been a useful formulation to understand synaptic plasticity and metaplasticity, a mechanism for the activity-dependent regulation of this modification threshold has remained an open question. In this simulation study based on CA1 pyramidal cells, we use a modification of the calcium-dependent hypothesis proposed elsewhere and show that a change in the hyperpolarization-activated, nonspecific-cation h current is capable of shifting the modification threshold. Based on the direction of such a shift in relation to changes in the h current, and supported by previous experimental results, we argue that the h current fits the requirements for an activity-dependent regulator of this modification threshold. Additionally, using the same framework, we show that multiple voltage- and ligand-gated ion channels present in a neuronal compartment can regulate the modification threshold through complex interactions among themselves. Our results underscore the heavy mutual interdependence of synaptic and intrinsic properties/plasticity in regulating learning and homeostasis in single neurons and their networks under both physiological and pathological brain states.
Hebbian 突触可塑性充当正反馈机制,如果不激活伴随的、平衡这种不稳定性的同型平衡过程,则可能破坏神经网络。在类似于 Bienenstock-Cooper-Munro (BCM) 的可塑性框架内,这种补偿是通过以活动依赖性方式滑动的修改阈值来实现的。尽管类似于 BCM 的可塑性框架是理解突触可塑性和超可塑性的有用公式,但活动依赖性调节这种修改阈值的机制仍然是一个悬而未决的问题。在这项基于 CA1 锥体神经元的模拟研究中,我们使用了别处提出的钙依赖性假说的一种变体,并表明去极化激活的非特异性阳离子 h 电流的变化能够改变修改阈值。基于这种变化与 h 电流变化之间的关系,以及先前的实验结果,我们认为 h 电流符合作为这种修改阈值的活动依赖性调节剂的要求。此外,使用相同的框架,我们表明单个神经元及其网络在生理和病理脑状态下,存在于神经元隔室中的多个电压和配体门控离子通道可以通过它们之间的复杂相互作用来调节修改阈值。我们的研究结果强调了在调节学习和同型平衡方面,突触和内在特性/可塑性之间的高度相互依存性。