Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA.
J Neurophysiol. 2010 Sep;104(3):1673-80. doi: 10.1152/jn.00233.2010. Epub 2010 Jun 16.
Motor learning and habit formation are thought to depend on corticostriatal synaptic plasticity. Moreover, basolateral amygdala (BLA) activity facilitates consolidation of striatal-dependent memories. Accordingly, BLA stimulation in vitro facilitates long-term potentiation (LTP) induction at corticostriatal synapses onto medium spiny neurons (MSNs). Although these effects were found to depend on N-methyl-d-aspartate (NMDA) receptor activation at BLA synapses and consequent Ca(2+) influx, it is unclear how this event can facilitate LTP at cortical synapses, even when the two inputs are not coactivated. Here, we aimed to shed light on this question, using whole cell recordings of MSNs in vitro. We first tested whether BLA inputs end at more proximal dendritic sites than cortical inputs. In this scenario, BLA synapses would experience stronger spike-related depolarizations and be in a strategic position to control the spread of second messengers. However, comparison of compound excitatory postsynaptic potentials and single-axon excitatory postsynaptic currents revealed that BLA and cortical synapses are intermingled. Next, we examined the sensitivity of cortical and BLA NMDA responses to ifenprodil because NR2A-containing NMDA receptors have faster kinetics than those containing NR2B subunits. However, the two inputs did not differ in this respect. Last, reasoning that propagating waves of Ca(2+)-induced Ca(2+) release (CICR) could bridge temporal gaps between the two inputs, we tested the effects of CICR inhibitors on the BLA facilitation of corticostriatal LTP induction. Pharmacological interference with CICR blocked corticostriatal LTP induction. Thus our results are consistent with the notion that NMDA-dependent Ca(2+) influx at BLA synapses initiates propagating waves of CICR, thereby biasing active corticostriatal inputs toward synaptic potentiation.
运动学习和习惯形成被认为依赖于皮质纹状体突触可塑性。此外,基底外侧杏仁核(BLA)的活动促进了纹状体依赖记忆的巩固。因此,体外刺激 BLA 促进了皮质纹状体突触到中等棘突神经元(MSNs)的长时程增强(LTP)诱导。尽管这些效应被发现依赖于 BLA 突触 NMDA 受体的激活和随后的 Ca2+内流,但尚不清楚这一事件如何促进皮质突触的 LTP,即使这两个输入没有共同激活。在这里,我们旨在通过体外 MSN 的全细胞膜片钳记录来阐明这个问题。我们首先测试了 BLA 输入是否终止于比皮质输入更近端的树突部位。在这种情况下,BLA 突触将经历更强的与尖峰相关的去极化,并处于控制第二信使传播的战略位置。然而,比较复合兴奋性突触后电位和单轴兴奋性突触后电流表明,BLA 和皮质突触是混合的。接下来,我们检查了皮质和 BLA NMDA 反应对ifenprodil 的敏感性,因为含有 NR2A 的 NMDA 受体比含有 NR2B 亚基的 NMDA 受体具有更快的动力学。然而,在这方面,这两个输入没有差异。最后,我们推理认为,Ca2+诱导的 Ca2+释放(CICR)传播波可以弥合两个输入之间的时间间隙,因此我们测试了 CICR 抑制剂对 BLA 促进皮质纹状体 LTP 诱导的影响。药理学干扰 CICR 阻断了皮质纹状体 LTP 的诱导。因此,我们的结果与以下观点一致,即 BLA 突触 NMDA 依赖性 Ca2+内流引发传播波的 CICR,从而使活跃的皮质纹状体输入偏向于突触增强。