Dynamics and Pathophysiology of Neuronal Networks, INSERM U-667, Centre for Interdisciplinary Research in Biology, College de France, University Pierre et Marie Curie, 75005 Paris, France.
J Physiol. 2010 Aug 15;588(Pt 16):3045-62. doi: 10.1113/jphysiol.2010.188466. Epub 2010 Jul 5.
Corticostriatal projections constitute the main input to the basal ganglia, an ensemble of interconnected subcortical nuclei involved in procedural learning. Thus, long-term plasticity at corticostriatal synapses would provide a basic mechanism for the function of basal ganglia in learning and memory. We had previously reported the existence of a corticostriatal anti-Hebbian spike timing-dependent plasticity (STDP) at synapses onto striatal output neurons, the medium-sized spiny neurons. Here, we show that the blockade of GABAergic transmission reversed the time dependence of corticostriatal STDP. We explored the receptors and signalling mechanisms involved in the corticostriatal STDP. Although classical models for STDP propose NMDA receptors as the unique coincidence detector, the involvement of multiple coincidence detectors has also been demonstrated. Here, we show that corticostriatal STDP depends on distinct coincidence detectors. Specifically, long-term potentiation is dependent on NMDA receptor activation, while long-term depression requires distinct coincidence detectors: the phospholipase Cbeta (PLCbeta) and the inositol-trisphosphate receptor (IP3R)-gated calcium stores. Furthermore, we found that PLCbeta activation is controlled by group-I metabotropic glutamate receptors, type-1 muscarinic receptors and voltage-sensitive calcium channel activities. Activation of PLCbeta and IP3Rs leads to robust retrograde endocannabinoid signalling mediated by 2-arachidonoyl-glycerol and cannabinoid CB1 receptors. Interestingly, the same coincidence detectors govern the corticostriatal anti-Hebbian STDP and the Hebbian STDP reported at cortical synapses. Therefore, LTP and LTD induced by STDP at corticostriatal synapses are mediated by independent signalling mechanisms, each one being controlled by distinct coincidence detectors.
皮质纹状体投射构成基底神经节的主要输入,基底神经节是一组相互连接的皮层下核团,参与程序学习。因此,皮质纹状体突触的长时程可塑性为基底神经节在学习和记忆中的功能提供了一个基本机制。我们之前曾报道过皮质纹状体突触上存在一种抗赫布型的皮质纹状体突触时程依赖可塑性(STDP),该突触位于纹状体输出神经元,即中型棘突神经元上。在这里,我们表明 GABA 能传递的阻断逆转了皮质纹状体 STDP 的时间依赖性。我们探索了参与皮质纹状体 STDP 的受体和信号机制。尽管经典的 STDP 模型提出 NMDA 受体是唯一的巧合检测器,但也已经证明了多种巧合检测器的参与。在这里,我们表明皮质纹状体 STDP 取决于不同的巧合检测器。具体来说,长时程增强依赖于 NMDA 受体的激活,而长时程抑制需要不同的巧合检测器:磷脂酶 Cβ(PLCβ)和三磷酸肌醇受体(IP3R)门控钙库。此外,我们发现 PLCβ 的激活受 I 型代谢型谷氨酸受体、1 型毒蕈碱受体和电压敏感性钙通道活性的控制。PLCβ 和 IP3Rs 的激活导致由 2-花生四烯酰甘油和大麻素 CB1 受体介导的强大逆行内源性大麻素信号转导。有趣的是,相同的巧合检测器控制着皮质纹状体的抗赫布型 STDP 和皮质突触上报道的赫布型 STDP。因此,皮质纹状体突触上的 STDP 诱导的 LTP 和 LTD 是由独立的信号机制介导的,每种机制都由不同的巧合检测器控制。