Suppr超能文献

三磷酸腺苷敏感性钾通道介导的乳酸对食欲素神经元的作用:觉醒期间脑能量代谢的意义。

ATP-sensitive potassium channel-mediated lactate effect on orexin neurons: implications for brain energetics during arousal.

机构信息

Division of BioMedical Sciences, Faculty of Medicine, Memorial University, St. John's, Newfoundland and Labrador A1B 3V6, Canada.

出版信息

J Neurosci. 2010 Jun 16;30(24):8061-70. doi: 10.1523/JNEUROSCI.5741-09.2010.

Abstract

Active neurons have a high demand for energy substrate, which is thought to be mainly supplied as lactate by astrocytes. Heavy lactate dependence of neuronal activity suggests that there may be a mechanism that detects and controls lactate levels and/or gates brain activation accordingly. Here, we demonstrate that orexin neurons can behave as such lactate sensors. Using acute brain slice preparations and patch-clamp techniques, we show that the monocarboxylate transporter blocker alpha-cyano-4-hydroxycinnamate (4-CIN) inhibits the spontaneous activity of orexin neurons despite the presence of extracellular glucose. Furthermore, fluoroacetate, a glial toxin, inhibits orexin neurons in the presence of glucose but not lactate. Thus, orexin neurons specifically use astrocyte-derived lactate. The effect of lactate on firing activity is concentration dependent, an essential characteristic of lactate sensors. Furthermore, lactate disinhibits and sensitizes these neurons for subsequent excitation. 4-CIN has no effect on the activity of some arcuate neurons, indicating that lactate dependency is not universal. Orexin neurons show an indirect concentration-dependent sensitivity to glucose below 1 mm, responding by hyperpolarization, which is mediated by ATP-sensitive potassium channels composed of Kir6.1 and SUR1 subunits. In conclusion, our study suggests that lactate is a critical energy substrate and a regulator of the orexin system. Together with the known effects of orexins in inducing arousal, food intake, and hepatic glucose production, as well as lactate release from astrocytes in response to neuronal activity, our study suggests that orexin neurons play an integral part in balancing brain activity and energy supply.

摘要

活性神经元对能量底物有很高的需求,据认为这种能量底物主要由星形胶质细胞以乳酸盐的形式提供。神经元活动对乳酸盐的严重依赖表明,可能存在一种机制来检测和控制乳酸盐水平,并相应地控制大脑的激活。在这里,我们证明了食欲素神经元可以作为这种乳酸盐传感器。使用急性脑切片制剂和膜片钳技术,我们表明单羧酸转运体阻滞剂α-氰基-4-羟基肉桂酸(4-CIN)抑制了食欲素神经元的自发活动,尽管存在细胞外葡萄糖。此外,氟乙酸盐,一种神经胶质毒素,在存在葡萄糖但不存在乳酸盐的情况下抑制食欲素神经元。因此,食欲素神经元特异性地使用星形胶质细胞衍生的乳酸盐。乳酸盐对放电活动的影响具有浓度依赖性,这是乳酸盐传感器的一个重要特征。此外,乳酸盐使这些神经元对后续的兴奋产生去抑制和敏感作用。4-CIN 对一些弓状神经元的活动没有影响,表明乳酸盐的依赖性不是普遍的。食欲素神经元对低于 1 mM 的葡萄糖表现出间接的浓度依赖性敏感性,通过由 Kir6.1 和 SUR1 亚基组成的 ATP 敏感钾通道超极化来响应,这种超极化是由葡萄糖引起的。总之,我们的研究表明,乳酸盐是一种关键的能量底物和食欲素系统的调节剂。结合已知的食欲素在诱导觉醒、进食和肝葡萄糖产生方面的作用,以及星形胶质细胞对神经元活动的乳酸盐释放,我们的研究表明,食欲素神经元在平衡大脑活动和能量供应方面发挥着不可或缺的作用。

相似文献

2
Acute optogenetic silencing of orexin/hypocretin neurons induces slow-wave sleep in mice.
J Neurosci. 2011 Jul 20;31(29):10529-39. doi: 10.1523/JNEUROSCI.0784-11.2011.
3
Direct excitation of hypocretin/orexin cells by extracellular ATP at P2X receptors.
J Neurophysiol. 2005 Sep;94(3):2195-206. doi: 10.1152/jn.00035.2005. Epub 2005 Jun 15.
4
Metabolism-independent sugar sensing in central orexin neurons.
Diabetes. 2008 Oct;57(10):2569-76. doi: 10.2337/db08-0548. Epub 2008 Jun 30.
5
Serotonergic regulation of the orexin/hypocretin neurons through the 5-HT1A receptor.
J Neurosci. 2004 Aug 11;24(32):7159-66. doi: 10.1523/JNEUROSCI.1027-04.2004.
6
The wake-promoting hypocretin-orexin neurons are in an intrinsic state of membrane depolarization.
J Neurosci. 2003 Mar 1;23(5):1557-62. doi: 10.1523/JNEUROSCI.23-05-01557.2003.
8
Adenosine inhibits paraventricular pre-sympathetic neurons through ATP-dependent potassium channels.
J Neurochem. 2010 Apr;113(2):530-42. doi: 10.1111/j.1471-4159.2010.06618.x. Epub 2010 Jan 25.
9
Modulation of thalamic neuron excitability by orexins.
Neuropharmacology. 2006 Sep;51(3):414-25. doi: 10.1016/j.neuropharm.2006.03.030. Epub 2006 May 19.

引用本文的文献

1
Lac-Phe induces hypophagia by inhibiting AgRP neurons in mice.
Nat Metab. 2025 Sep 16. doi: 10.1038/s42255-025-01377-9.
2
Lactate-induced metabolic signaling is the potential mechanism for reshaping the brain function - role of physical exercise.
Front Endocrinol (Lausanne). 2025 Jun 9;16:1598419. doi: 10.3389/fendo.2025.1598419. eCollection 2025.
3
ATP-sensitive potassium channels alter glycolytic flux to modulate cortical activity and sleep.
Proc Natl Acad Sci U S A. 2025 Feb 25;122(8):e2416578122. doi: 10.1073/pnas.2416578122. Epub 2025 Feb 18.
7
Lactate: A Theranostic Biomarker for Metabolic Psychiatry?
Antioxidants (Basel). 2023 Aug 22;12(9):1656. doi: 10.3390/antiox12091656.
8
Role of astrocytes in sleep deprivation: accomplices, resisters, or bystanders?
Front Cell Neurosci. 2023 Jun 26;17:1188306. doi: 10.3389/fncel.2023.1188306. eCollection 2023.
10
Astrocyte-Neuronal Communication and Its Role in Stroke.
Neurochem Res. 2023 Oct;48(10):2996-3006. doi: 10.1007/s11064-023-03966-0. Epub 2023 Jun 17.

本文引用的文献

1
A major role for perifornical orexin neurons in the control of glucose metabolism in rats.
Diabetes. 2009 Sep;58(9):1998-2005. doi: 10.2337/db09-0385. Epub 2009 Jul 10.
2
Sustained hydrogen peroxide stress decreases lactate production by cultured astrocytes.
J Neurosci Res. 2009 Sep;87(12):2696-708. doi: 10.1002/jnr.22093.
3
Glucose inhibition persists in hypothalamic neurons lacking tandem-pore K+ channels.
J Neurosci. 2009 Feb 25;29(8):2528-33. doi: 10.1523/JNEUROSCI.5764-08.2009.
4
Dissociation between sensing and metabolism of glucose in sugar sensing neurones.
J Physiol. 2009 Jan 15;587(1):41-8. doi: 10.1113/jphysiol.2008.163410. Epub 2008 Nov 3.
5
Adaptive sugar sensors in hypothalamic feeding circuits.
Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):11975-80. doi: 10.1073/pnas.0802687105. Epub 2008 Aug 11.
6
Metabolism-independent sugar sensing in central orexin neurons.
Diabetes. 2008 Oct;57(10):2569-76. doi: 10.2337/db08-0548. Epub 2008 Jun 30.
7
Brain glucose sensing, counterregulation, and energy homeostasis.
Physiology (Bethesda). 2007 Aug;22:241-51. doi: 10.1152/physiol.00010.2007.
8
Activity-dependent regulation of energy metabolism by astrocytes: an update.
Glia. 2007 Sep;55(12):1251-1262. doi: 10.1002/glia.20528.
9
Enhanced expression of three monocarboxylate transporter isoforms in the brain of obese mice.
J Physiol. 2007 Sep 1;583(Pt 2):469-86. doi: 10.1113/jphysiol.2007.138594. Epub 2007 Jun 28.
10
Control of hypothalamic orexin neurons by acid and CO2.
Proc Natl Acad Sci U S A. 2007 Jun 19;104(25):10685-90. doi: 10.1073/pnas.0702676104. Epub 2007 Jun 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验