Suppr超能文献

亨廷顿病中线粒体功能障碍与转录失调的相互关系。

The interrelationship between mitochondrial dysfunction and transcriptional dysregulation in Huntington disease.

机构信息

Department of Anesthesiology, University of Rochester, 601 Elmwood Ave, Box 604, Rochester, NY 14642, USA.

出版信息

J Bioenerg Biomembr. 2010 Jun;42(3):199-205. doi: 10.1007/s10863-010-9286-7.

Abstract

Huntington disease (HD) is an inherited neurodegenerative disease caused by an abnormal expansion of the CAG repeat region in the huntingtin (Htt) gene. Although the pathogenic mechanisms by which mutant Htt (mHtt) causes HD have not been fully elucidated, it is becoming increasingly apparent that mHtt can impair mitochondrial function directly, as well as indirectly by dysregulation of transcriptional processes. mHtt causes increased sensitivity to Ca(2+)-induced decreases in state 3 respiration and mitochondrial permeability transition pore (mPTP) opening concurrent with a reduction in mitochondrial Ca(2+) uptake capacity. Treatment of striatal cells expressing mHtt with thapsigargin results in a decrease in mitochondrial Ca(2+) uptake and membrane potential and an increase in reactive oxygen species (ROS) production. Transcriptional processes regulated by peroxisome proliferator-activated receptor gamma (PPAR gamma) coactivator-1 alpha (PGC-1 alpha), which are critical for mitochondrial biogenesis, have been shown to be impaired in HD. In addition, the PPAR gamma signaling pathway is impaired by mHtt and the activation of this pathway ameliorates many of the mitochondrial deficits, suggesting that PPAR gamma agonists may represent an important treatment strategy for HD.

摘要

亨廷顿病(HD)是一种遗传性神经退行性疾病,由亨廷顿(Htt)基因中 CAG 重复区域的异常扩展引起。尽管突变型 Htt(mHtt)导致 HD 的致病机制尚未完全阐明,但越来越明显的是,mHtt 可以直接损害线粒体功能,也可以通过转录过程的失调间接损害线粒体功能。mHtt 导致 Ca(2+)诱导的呼吸状态 3 下降和线粒体通透性转换孔(mPTP)开放的敏感性增加,同时伴随着线粒体 Ca(2+)摄取能力的降低。用他普西醇处理表达 mHtt 的纹状体细胞会导致线粒体 Ca(2+)摄取和膜电位减少,以及活性氧(ROS)产生增加。过氧化物酶体增殖物激活受体γ(PPARγ)共激活因子-1α(PGC-1α)调节的转录过程对于线粒体生物发生至关重要,在 HD 中已被证明受到损害。此外,mHtt 损害了 PPARγ 信号通路,该通路的激活改善了许多线粒体缺陷,表明 PPARγ 激动剂可能是治疗 HD 的重要策略。

相似文献

1
The interrelationship between mitochondrial dysfunction and transcriptional dysregulation in Huntington disease.
J Bioenerg Biomembr. 2010 Jun;42(3):199-205. doi: 10.1007/s10863-010-9286-7.
2
Neuroprotective effects of PPAR-γ agonist rosiglitazone in N171-82Q mouse model of Huntington's disease.
J Neurochem. 2013 May;125(3):410-9. doi: 10.1111/jnc.12190. Epub 2013 Mar 5.
4
PGC-1α, mitochondrial dysfunction, and Huntington's disease.
Free Radic Biol Med. 2013 Sep;62:37-46. doi: 10.1016/j.freeradbiomed.2013.04.016. Epub 2013 Apr 19.
5
Mitochondrial permeability transition pore induces mitochondria injury in Huntington disease.
Mol Neurodegener. 2013 Dec 11;8:45. doi: 10.1186/1750-1326-8-45.
6
The dysfunction of hepatic transcriptional factors in mice with Huntington's Disease.
Biochim Biophys Acta. 2011 Sep;1812(9):1111-20. doi: 10.1016/j.bbadis.2011.05.006. Epub 2011 May 30.
8
Mitochondrial matters of the brain: the role in Huntington's disease.
J Bioenerg Biomembr. 2010 Jun;42(3):193-8. doi: 10.1007/s10863-010-9290-y.

引用本文的文献

2
Therapeutic approaches targeting aging and cellular senescence in Huntington's disease.
CNS Neurosci Ther. 2024 Oct;30(10):e70053. doi: 10.1111/cns.70053.
5
6
SIRT3 Activation a Promise in Drug Development? New Insights into SIRT3 Biology and Its Implications on the Drug Discovery Process.
J Med Chem. 2024 Feb 8;67(3):1662-1689. doi: 10.1021/acs.jmedchem.3c01979. Epub 2024 Jan 23.
7
Therapeutic Potential of Capsaicin in Various Neurodegenerative Diseases with Special Focus on Nrf2 Signaling.
Curr Pharm Biotechnol. 2024;25(13):1693-1707. doi: 10.2174/0113892010277933231122111244.
8
Interactions of amyloidogenic proteins with mitochondrial protein import machinery in aging-related neurodegenerative diseases.
Front Physiol. 2023 Nov 2;14:1263420. doi: 10.3389/fphys.2023.1263420. eCollection 2023.
10
Cell Rearrangement and Oxidant/Antioxidant Imbalance in Huntington's Disease.
Antioxidants (Basel). 2023 Feb 24;12(3):571. doi: 10.3390/antiox12030571.

本文引用的文献

1
Abnormal morphology of peripheral cell tissues from patients with Huntington disease.
J Neural Transm (Vienna). 2010 Jan;117(1):77-83. doi: 10.1007/s00702-009-0328-4. Epub 2009 Oct 16.
2
Mitochondria in Huntington's disease.
Biochim Biophys Acta. 2010 Jan;1802(1):52-61. doi: 10.1016/j.bbadis.2009.07.012. Epub 2009 Aug 11.
3
Role of mitochondrial dysfunction in the pathogenesis of Huntington's disease.
Brain Res Bull. 2009 Oct 28;80(4-5):242-7. doi: 10.1016/j.brainresbull.2009.07.010. Epub 2009 Jul 19.
4
In vivo evidence for NMDA receptor-mediated excitotoxicity in a murine genetic model of Huntington disease.
J Neurosci. 2009 Mar 11;29(10):3200-5. doi: 10.1523/JNEUROSCI.5599-08.2009.
5
Mitochondrial DNA damage is a hallmark of chemically induced and the R6/2 transgenic model of Huntington's disease.
DNA Repair (Amst). 2009 Jan 1;8(1):126-36. doi: 10.1016/j.dnarep.2008.09.004. Epub 2008 Nov 20.
7
Mechanisms of neurodegeneration in Huntington's disease.
Eur J Neurosci. 2008 Jun;27(11):2803-20. doi: 10.1111/j.1460-9568.2008.06310.x.
9
Calcium homeostasis and mitochondrial dysfunction in striatal neurons of Huntington disease.
J Biol Chem. 2008 Feb 29;283(9):5780-9. doi: 10.1074/jbc.M704704200. Epub 2007 Dec 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验