Damiano Maria, Galvan Laurie, Déglon Nicole, Brouillet Emmanuel
CEA, DSV, I2BM Molecular Imaging Research Center (MIRCen), F-92265 Fontenay-aux-Roses, France.
Biochim Biophys Acta. 2010 Jan;1802(1):52-61. doi: 10.1016/j.bbadis.2009.07.012. Epub 2009 Aug 11.
Huntington's disease (HD) is an inherited progressive neurodegenerative disorder associated with involuntary abnormal movements (chorea), cognitive deficits and psychiatric disturbances. The disease is caused by an abnormal expansion of a CAG repeat located in exon 1 of the gene encoding the huntingtin protein (Htt) that confers a toxic function to the protein. The most striking neuropathological change in HD is the preferential loss of medium spiny GABAergic neurons in the striatum. The mechanisms underlying striatal vulnerability in HD are unknown, but compelling evidence suggests that mitochondrial defects may play a central role. Here we review recent findings supporting this hypothesis. Studies investigating the toxic effects of mutant Htt in cell culture or animal models reveal mitochondrial changes including reduction of Ca2+ buffering capacity, loss of membrane potential, and decreased expression of oxidative phosphorylation (OXPHOS) enzymes. Striatal neurons may be particularly vulnerable to these defects. One hypothesis is that neurotransmission systems such as dopamine and glutamate exacerbate mitochondrial defects in the striatum. In particular, mitochondrial dysfunction facilitates impaired Ca2+ homeostasis linked to the glutamate receptor-mediated excitotoxicity. Also dopamine receptors modulate mutant Htt toxicity, at least in part through regulation of the expression of mitochondrial complex II. All these observations support the hypothesis that mitochondria, acting as "sensors" of the neurochemical environment, play a central role in striatal degeneration in HD.
亨廷顿舞蹈症(HD)是一种遗传性进行性神经退行性疾病,与不自主异常运动(舞蹈症)、认知缺陷及精神障碍相关。该疾病由编码亨廷顿蛋白(Htt)的基因外显子1中CAG重复序列的异常扩增所致,这种扩增赋予了该蛋白毒性功能。HD最显著的神经病理学变化是纹状体中中等棘状GABA能神经元的选择性丧失。HD中纹状体易损性的潜在机制尚不清楚,但有力证据表明线粒体缺陷可能起核心作用。在此,我们综述支持这一假说的近期研究发现。在细胞培养或动物模型中研究突变型Htt毒性作用的研究揭示了线粒体变化,包括Ca2+缓冲能力降低、膜电位丧失以及氧化磷酸化(OXPHOS)酶表达减少。纹状体神经元可能对这些缺陷尤为敏感。一种假说是,多巴胺和谷氨酸等神经传递系统会加剧纹状体中的线粒体缺陷。特别是,线粒体功能障碍会促使与谷氨酸受体介导的兴奋性毒性相关的Ca2+稳态受损。此外,多巴胺受体至少部分通过调节线粒体复合物II的表达来调节突变型Htt的毒性。所有这些观察结果均支持线粒体作为神经化学环境的“传感器”在HD纹状体变性中起核心作用这一假说。