Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing, China.
Theor Appl Genet. 2010 Nov;121(7):1239-51. doi: 10.1007/s00122-010-1384-8. Epub 2010 Jun 17.
Nineteen novel full-ORF α-gliadin genes and 32 pseudogenes containing at least one stop codon were cloned and sequenced from three Aegilops tauschii accessions (T15, T43 and T26) and two bread wheat cultivars (Gaocheng 8901 and Zhongyou 9507). Analysis of three typical α-gliadin genes (Gli-At4, Gli-G1 and Gli-Z4) revealed some InDels and a considerable number of SNPs among them. Most of the pseudogenes were resulted from C to T change, leading to the generation of TAG or TAA in-frame stop codon. The putative proteins of both Gli-At3 and Gli-Z7 genes contained an extra cysteine residue in the unique domain II. Analysis of toxic epitodes among 19 deduced α-gliadins demonstrated that 14 of these contained 1-5 T cell stimulatory toxic epitopes while the other 5 did not contain any toxic epitopes. The glutamine residues in two specific ployglutamine domains ranged from 7 to 27, indicating a high variation in length. According to the numbers of 4 T cell stimulatory toxic epitopes and glutamine residues in the two ployglutamine domains among the 19 α-gliadin genes, 2 were assigned to chromosome 6A, 5 to chromosome 6B and 12 to chromosome 6D. These results were consistent with those from wheat cv. Chinese Spring nulli-tetrasomic and phylogenetic analysis. Secondary structure prediction showed that all α-gliadins had high content of β-strands and most of the α-helixes and β-strands were present in two unique domains. Phylogenetic analysis demonstrated that α-gliadin genes had a high homology with γ-gliadin, B-hordein, and LMW-GS genes and they diverged at approximate 39 MYA. Finally, the five α-gliadin genes were successfully expressed in E. coli, and their expression amount reached to the maximum after 4 h induced by IPTG, indicating that the α-gliadin genes can express in a high level under the control of T(7) promoter.
从三个节节麦(T15、T43 和 T26)和两个普通小麦品种(高城 8901 和中优 9507)中克隆并测序了 19 个新型全长 α-醇溶蛋白基因和 32 个含有至少一个终止密码子的假基因。对三个典型的 α-醇溶蛋白基因(Gli-At4、Gli-G1 和 Gli-Z4)的分析表明,它们之间存在一些插入缺失和大量的单核苷酸多态性。大多数假基因是由于 C 到 T 的变化导致无义的TAG 或 TAA 终止密码子的产生。Gli-At3 和 Gli-Z7 基因的推测蛋白在独特的 II 区都含有一个额外的半胱氨酸残基。对 19 个推导的 α-醇溶蛋白中的毒性表位进行分析表明,其中 14 个含有 1-5 个 T 细胞刺激毒性表位,而另外 5 个不含有任何毒性表位。两个特定的多谷氨酰胺结构域中的谷氨酰胺残基数量为 7-27,表明长度变化很大。根据 19 个 α-醇溶蛋白基因中两个多谷氨酰胺结构域中的 4 个 T 细胞刺激毒性表位和谷氨酰胺残基的数量,2 个分配到 6A 染色体,5 个分配到 6B 染色体,12 个分配到 6D 染色体。这些结果与小麦中国春缺体-四体的结果和系统发育分析一致。二级结构预测表明,所有的 α-醇溶蛋白都具有很高的β-折叠含量,大多数α-螺旋和β-折叠存在于两个独特的结构域中。系统发育分析表明,α-醇溶蛋白基因与 γ-醇溶蛋白、B-类谷蛋白和 LMW-GS 基因具有很高的同源性,它们在大约 39 百万年前就已经分化了。最后,成功地在大肠杆菌中表达了五个 α-醇溶蛋白基因,在 IPTG 诱导 4 小时后达到最大表达量,表明在 T7 启动子的控制下,α-醇溶蛋白基因可以高水平表达。