van Herpen Teun W J M, Goryunova Svetlana V, van der Schoot Johanna, Mitreva Makedonka, Salentijn Elma, Vorst Oscar, Schenk Martijn F, van Veelen Peter A, Koning Frits, van Soest Loek J M, Vosman Ben, Bosch Dirk, Hamer Rob J, Gilissen Luud J W J, Smulders Marinus J M
Allergy Consortium Wageningen, PO Box 16, NL-6700 AA Wageningen, The Netherlands.
BMC Genomics. 2006 Jan 10;7:1. doi: 10.1186/1471-2164-7-1.
Bread wheat (Triticum aestivum) is an important staple food. However, wheat gluten proteins cause celiac disease (CD) in 0.5 to 1% of the general population. Among these proteins, the alpha-gliadins contain several peptides that are associated to the disease.
We obtained 230 distinct alpha-gliadin gene sequences from severaldiploid wheat species representing the ancestral A, B, and D genomes of the hexaploid bread wheat. The large majority of these sequences (87%) contained an internal stop codon. All alpha-gliadin sequences could be distinguished according to the genome of origin on the basis of sequence similarity, of the average length of the polyglutamine repeats, and of the differences in the presence of four peptides that have been identified as T cell stimulatory epitopes in CD patients through binding to HLA-DQ2/8. By sequence similarity, alpha-gliadins from the public database of hexaploid T. aestivum could be assigned directly to chromosome 6A, 6B, or 6D. T. monococcum (A genome) sequences, as well as those from chromosome 6A of bread wheat, almost invariably contained epitope glia-alpha9 and glia-alpha20, but never the intact epitopes glia-alpha and glia-alpha2. A number of sequences from T. speltoides, as well as a number of sequences fromchromosome 6B of bread wheat, did not contain any of the four T cell epitopes screened for. The sequences from T. tauschii (D genome), as well as those from chromosome 6D of bread wheat, were found to contain all of these T cell epitopes in variable combinations per gene. The differences in epitope composition resulted mainly from point mutations. These substitutions appeared to be genome specific.
Our analysis shows that alpha-gliadin sequences from the three genomes of bread wheat form distinct groups. The four known T cell stimulatory epitopes are distributed non-randomly across the sequences, indicating that the three genomes contribute differently to epitope content. A systematic analysis of all known epitopes in gliadins and glutenins will lead to better understanding of the differences in toxicity among wheat varieties. On the basis of such insight, breeding strategies can be designed to generate less toxic varieties of wheat which may be tolerated by at least part of the CD patient population.
面包小麦(普通小麦)是一种重要的主食。然而,小麦面筋蛋白会在0.5%至1%的普通人群中引发乳糜泻(CD)。在这些蛋白质中,α-醇溶蛋白包含几种与该疾病相关的肽段。
我们从代表六倍体面包小麦祖先A、B和D基因组的几个二倍体小麦物种中获得了230个不同的α-醇溶蛋白基因序列。这些序列中的绝大多数(87%)含有内部终止密码子。所有α-醇溶蛋白序列可以根据起源基因组,基于序列相似性、聚谷氨酰胺重复序列的平均长度以及四种已被确定为通过与HLA-DQ2/8结合而在CD患者中作为T细胞刺激表位的肽段存在差异来区分。通过序列相似性,来自六倍体普通小麦公共数据库的α-醇溶蛋白可以直接定位到6A、6B或6D染色体上。一粒小麦(A基因组)序列以及面包小麦6A染色体上的序列几乎总是包含表位glia-alpha9和glia-alpha20,但从不包含完整的表位glia-alpha和glia-alpha2。斯卑尔脱小麦的一些序列以及面包小麦6B染色体上的一些序列,不包含所筛选的四个T细胞表位中的任何一个。节节麦(D基因组)的序列以及面包小麦6D染色体上的序列,被发现每个基因以不同组合包含所有这些T细胞表位。表位组成的差异主要源于点突变。这些替换似乎是基因组特异性的。
我们的分析表明,面包小麦三个基因组的α-醇溶蛋白序列形成了不同的组。四个已知的T细胞刺激表位在序列中分布并非随机,这表明三个基因组对表位含量的贡献不同。对醇溶蛋白和谷蛋白中所有已知表位进行系统分析将有助于更好地理解小麦品种之间毒性的差异。基于这样的认识,可以设计育种策略来培育毒性较小的小麦品种,至少部分CD患者群体可能能够耐受这些品种。