Suppr超能文献

对人类同步脑电图和脑磁图记录进行的比较功率谱分析表明存在非电阻性细胞外介质:脑电图和脑磁图功率谱。

Comparative power spectral analysis of simultaneous electroencephalographic and magnetoencephalographic recordings in humans suggests non-resistive extracellular media : EEG and MEG power spectra.

作者信息

Dehghani Nima, Bédard Claude, Cash Sydney S, Halgren Eric, Destexhe Alain

机构信息

Integrative and Computational Neuroscience Unit (UNIC), UPR2191, CNRS, Gif-sur-Yvette, France.

出版信息

J Comput Neurosci. 2010 Jun 17. doi: 10.1007/s10827-010-0252-5.

Abstract

The resistive or non-resistive nature of the extracellular space in the brain is still debated, and is an important issue for correctly modeling extracellular potentials. Here, we first show theoretically that if the medium is resistive, the frequency scaling should be the same for electroencephalogram (EEG) and magnetoencephalogram (MEG) signals at low frequencies (<10 Hz). To test this prediction, we analyzed the spectrum of simultaneous EEG and MEG measurements in four human subjects. The frequency scaling of EEG displays coherent variations across the brain, in general between 1/f and 1/f (2). In a given region, although the variability of the frequency scaling exponent was higher for MEG compared to EEG, both signals consistently scale with a different exponent. In some cases, the scaling was similar, but only when the signal-to-noise ratio of the MEG was low. Several methods of noise correction for environmental and instrumental noise were tested, and they all increased the difference between EEG and MEG scaling. In conclusion, there is a significant difference in frequency scaling between EEG and MEG, which can be explained if the extracellular medium (including other layers such as dura matter and skull) is globally non-resistive.

摘要

大脑细胞外空间的电阻性或非电阻性本质仍存在争议,并且是正确模拟细胞外电位的一个重要问题。在此,我们首先从理论上表明,如果介质具有电阻性,那么在低频(<10赫兹)时,脑电图(EEG)和脑磁图(MEG)信号的频率标度应该相同。为了验证这一预测,我们分析了四名人类受试者同步进行的脑电图和脑磁图测量的频谱。脑电图的频率标度在整个大脑中呈现出连贯的变化,一般在1/f和1/f²之间。在给定区域,尽管与脑电图相比,脑磁图频率标度指数的变异性更高,但两种信号始终以不同的指数进行标度。在某些情况下,标度是相似的,但仅在脑磁图的信噪比很低时才会如此。我们测试了几种针对环境和仪器噪声的噪声校正方法,它们都增大了脑电图和脑磁图标度之间的差异。总之,脑电图和脑磁图在频率标度上存在显著差异,如果细胞外介质(包括硬脑膜和颅骨等其他层)整体是非电阻性的,那么这一差异就能得到解释。

相似文献

3
Differences in MEG and EEG power-law scaling explained by a coupling between spatial coherence and frequency: a simulation study.
J Comput Neurosci. 2019 Aug;47(1):31-41. doi: 10.1007/s10827-019-00721-9. Epub 2019 Jul 11.
5
6
The human magnetoencephalogram: some EEG and related correlations.
Electroencephalogr Clin Neurophysiol. 1976 Jan;40(1):59-66. doi: 10.1016/0013-4694(76)90179-6.
7
Multimodal Modeling of Neural Network Activity: Computing LFP, ECoG, EEG, and MEG Signals With LFPy 2.0.
Front Neuroinform. 2018 Dec 18;12:92. doi: 10.3389/fninf.2018.00092. eCollection 2018.
8
Measuring the cortical correlation structure of spontaneous oscillatory activity with EEG and MEG.
Neuroimage. 2016 Apr 1;129:345-355. doi: 10.1016/j.neuroimage.2016.01.055. Epub 2016 Jan 28.
9
Simultaneous recording of MEG, EEG and intracerebral EEG during visual stimulation: from feasibility to single-trial analysis.
Neuroimage. 2014 Oct 1;99:548-58. doi: 10.1016/j.neuroimage.2014.05.055. Epub 2014 May 23.

引用本文的文献

1
Critical scaling of whole-brain resting-state dynamics.
Commun Biol. 2023 Jun 10;6(1):627. doi: 10.1038/s42003-023-05001-y.
2
Beyond Trial-Based Paradigms: Continuous Behavior, Ongoing Neural Activity, and Natural Stimuli.
J Neurosci. 2018 Aug 29;38(35):7551-7558. doi: 10.1523/JNEUROSCI.1920-17.2018. Epub 2018 Jul 23.
3
Scale-Free Neural and Physiological Dynamics in Naturalistic Stimuli Processing.
eNeuro. 2016 Oct 24;3(5). doi: 10.1523/ENEURO.0191-16.2016. eCollection 2016 Sep-Oct.
4
Scale-free brain activity: past, present, and future.
Trends Cogn Sci. 2014 Sep;18(9):480-7. doi: 10.1016/j.tics.2014.04.003. Epub 2014 Apr 28.

本文引用的文献

2
Power-law scaling in the brain surface electric potential.
PLoS Comput Biol. 2009 Dec;5(12):e1000609. doi: 10.1371/journal.pcbi.1000609. Epub 2009 Dec 18.
3
Cancellation of EEG and MEG signals generated by extended and distributed sources.
Hum Brain Mapp. 2010 Jan;31(1):140-9. doi: 10.1002/hbm.20851.
4
Macroscopic models of local field potentials and the apparent 1/f noise in brain activity.
Biophys J. 2009 Apr 8;96(7):2589-603. doi: 10.1016/j.bpj.2008.12.3951.
5
Phase local approximation (PhaseLa) technique for phase unwrap from noisy data.
IEEE Trans Image Process. 2008 Jun;17(6):833-46. doi: 10.1109/TIP.2008.916046.
6
Influence of filters in the detrended fluctuation analysis of digital electroencephalographic data.
J Neurosci Methods. 2008 May 30;170(2):310-6. doi: 10.1016/j.jneumeth.2008.01.010. Epub 2008 Jan 20.
7
In vivo measurement of cortical impedance spectrum in monkeys: implications for signal propagation.
Neuron. 2007 Sep 6;55(5):809-23. doi: 10.1016/j.neuron.2007.07.027.
8
Feedback modulates the temporal scale-free dynamics of brain electrical activity in a hypothesis testing task.
Neuroscience. 2007 May 25;146(3):1400-12. doi: 10.1016/j.neuroscience.2007.02.048. Epub 2007 Apr 5.
9
Does the 1/f frequency scaling of brain signals reflect self-organized critical states?
Phys Rev Lett. 2006 Sep 15;97(11):118102. doi: 10.1103/PhysRevLett.97.118102. Epub 2006 Sep 13.
10
Model of low-pass filtering of local field potentials in brain tissue.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 May;73(5 Pt 1):051911. doi: 10.1103/PhysRevE.73.051911. Epub 2006 May 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验