Fedele T, Scheer H J, Burghoff M, Curio G, Körber R
Neurophysics Group, Department of Neurology, Campus Benjamin Franklin, Charite - University Medicine Berlin, Hindenburgdamm 30, 12200 Berlin, Germany. Physikalisch-Technische Bundesanstalt/Institut Berlin, Abbestr. 2-12, 10587 Berlin, Germany.
Physiol Meas. 2015 Feb;36(2):357-68. doi: 10.1088/0967-3334/36/2/357. Epub 2015 Jan 23.
Non-invasive EEG detection of very high frequency somatosensory evoked potentials featuring frequencies up to and above 1 kHz has been recently reported. Here, we establish the detectability of such components by combined low-noise EEG/MEG. We recorded SEP/SEF simultaneously using median nerve stimulation in five healthy human subjects inside an electromagnetically shielded room, combining a low-noise EEG custom-made amplifier (4.7 nV/√Hz) and a custom-made single-channel low-noise MEG (0.5 fT/√Hz @ 1 kHz). Both, low-noise EEG and MEG revealed three spectrally distinct and temporally overlapping evoked components: N20 (<100 Hz), sigma-burst (450-750 Hz), and kappa-burst (850-1200 Hz). The two recording modalities showed similar relative scaling of signal amplitude in all three frequencies domains (EEG [10 nV] ≅ MEG [1 fT]). Pronounced waveform (peak-by-peak) overlap of EEG and MEG signals is observed in the sigma band, whereas in the kappa band overlap was only partial. A decreasing signal-to-noise ratio (SNR; calculated for n = 12.000 averages) from sigma to kappa components characterizes both, electric and magnetic field recordings: Sigma-band SNR was 12.9 ± 5.5/19.8 ± 12.6 for EEG/MEG, and kappa-band SNR at 3.77 ± 0.8/4.5 ± 2.9. High-frequency performance of a tailor-made MEG matches closely with simultaneously recorded low-noise EEG for the non-invasive detection of somatosensory evoked activity at and above 1 kHz. Thus, future multi-channel dual-mode low-noise technology could offer complementary views for source reconstruction of the neural generators underlying such high-frequency responses, and render neural high-frequency processes related to multi-unit spike discharges accessible in non-invasive recordings.
最近有报道称,已实现对频率高达1kHz及以上的非常高频体感诱发电位进行无创脑电图检测。在此,我们通过低噪声脑电图/脑磁图联合检测来确定此类成分的可检测性。我们在电磁屏蔽室内对五名健康受试者进行正中神经刺激,同时记录体感诱发电位/体感诱发磁场(SEP/SEF),使用了定制的低噪声脑电图放大器(4.7 nV/√Hz)和定制的单通道低噪声脑磁图仪(1kHz时为0.5 fT/√Hz)。低噪声脑电图和脑磁图均显示出三个频谱上不同且时间上重叠的诱发成分:N20(<100Hz)、σ波爆发(450 - 750Hz)和κ波爆发(850 - 1200Hz)。两种记录方式在三个频域中信号幅度的相对缩放相似(脑电图[10 nV]≈脑磁图[1 fT])。在σ频段观察到脑电图和脑磁图信号明显的波形(逐峰)重叠,而在κ频段重叠只是部分的。从σ成分到κ成分,信噪比(SNR;针对n = 12000次平均计算)降低是电场和磁场记录的共同特征:脑电图/脑磁图的σ频段SNR分别为12.9±5.5/19.8±12.6,κ频段SNR为3.77±0.8/4.5±2.9。定制脑磁图仪的高频性能与同步记录的低噪声脑电图紧密匹配,可用于无创检测1kHz及以上的体感诱发活动。因此,未来的多通道双模低噪声技术可为这类高频反应背后神经发生器的源重建提供互补视角,并使与多单元锋电位发放相关的神经高频过程在无创记录中得以获取。