Suppr超能文献

模拟人类 Apert 综合征的 FGFR2(P253R)功能获得性突变导致的小鼠颅骨的动态形态变化。

Dynamic morphological changes in the skulls of mice mimicking human Apert syndrome resulting from gain-of-function mutation of FGFR2 (P253R).

机构信息

State Key Laboratory of Trauma, Burns and Combined Injury, Center of Bone Metabolism and Repair, Trauma Center, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China.

出版信息

J Anat. 2010 Aug;217(2):97-105. doi: 10.1111/j.1469-7580.2010.01248.x. Epub 2010 Jun 17.

Abstract

Apert syndrome is caused mainly by gain-of-function mutations of fibroblast growth factor receptor 2. We have generated a mouse model (Fgfr2(+/P253R)) mimicking human Apert syndrome resulting from fibroblast growth factor receptor 2 Pro253Arg mutation using the knock-in approach. This mouse model in general has the characteristic skull morphology similar to that in humans with Apert syndrome. To characterize the detailed changes of form in the overall skull and its major anatomic structures, euclidean distance matrix analysis was used to quantitatively compare the form and growth difference between the skulls of mutants and their wild-type controls. There were substantial morphological differences between the skulls of mutants and their controls at 4 and 8 weeks of age (P < 0.01). The mutants showed shortened skull dimensions along the rostrocaudal axis, especially in their face. The width of the frontal bone and the distance between the two orbits were broadened mediolaterally. The neurocrania were significantly increased along the dorsoventral axis and slightly increased along the mediolateral axis, and also had anteriorly displayed opisthion along the rostrocaudal axis. Compared with wild-type, the mutant mandible had an anteriorly displaced coronoid process and mandibular condyle along the rostrocaudal axis. We further found that there was catch-up growth in the nasal bone, maxilla, zygomatic bone and some regions of the mandible of the mutant skulls during the 4-8-week interval. The above-mentioned findings further validate the Fgfr2(+/P253R) mouse strain as a good model for human Apert syndrome. The changes in form characterized in this study will help to elucidate the mechanisms through which the Pro253Arg mutation in fibroblast growth factor receptor 2 affects craniofacial development and causes Apert syndrome.

摘要

Apert 综合征主要由成纤维细胞生长因子受体 2 的功能获得性突变引起。我们使用基因敲入的方法,构建了一个模拟人类 Apert 综合征的小鼠模型(Fgfr2(+/P253R)),该模型由成纤维细胞生长因子受体 2 Pro253Arg 突变引起。该小鼠模型通常具有与 Apert 综合征患者相似的特征性颅骨形态。为了描述整体颅骨及其主要解剖结构的详细形态变化,我们使用欧几里得距离矩阵分析来定量比较突变体和野生型对照组颅骨的形态和生长差异。在 4 周和 8 周龄时,突变体颅骨与对照颅骨之间存在显著的形态差异(P<0.01)。突变体颅骨沿前后轴的尺寸缩短,尤其是面部。额骨的宽度和两个眶之间的距离在中侧加宽。颅后窝沿背腹轴显著增加,沿中侧轴略有增加,并且沿前后轴呈现向后的枕骨后突。与野生型相比,突变体下颌的冠状突和下颌髁沿前后轴向前移位。我们进一步发现,在 4-8 周的间隔期间,突变体颅骨的鼻骨、上颌骨、颧骨和下颌骨的一些区域存在追赶生长。上述发现进一步验证了 Fgfr2(+/P253R) 小鼠品系是研究人类 Apert 综合征的良好模型。本研究中描述的形态变化将有助于阐明成纤维细胞生长因子受体 2 的 Pro253Arg 突变如何影响颅面发育并导致 Apert 综合征的机制。

相似文献

8
Mouse models of Apert syndrome.
Childs Nerv Syst. 2012 Sep;28(9):1505-10. doi: 10.1007/s00381-012-1872-z. Epub 2012 Aug 8.

引用本文的文献

1
Mandibular dysmorphology due to abnormal embryonic osteogenesis in FGFR2-related craniosynostosis mice.
Dis Model Mech. 2019 May 30;12(5):dmm038513. doi: 10.1242/dmm.038513.
2
Adeno-Associated Virus-Mediated RNAi against Mutant Alleles Attenuates Abnormal Calvarial Phenotypes in an Apert Syndrome Mouse Model.
Mol Ther Nucleic Acids. 2018 Dec 7;13:291-302. doi: 10.1016/j.omtn.2018.09.012. Epub 2018 Sep 22.
3
PIN1 is a new therapeutic target of craniosynostosis.
Hum Mol Genet. 2018 Nov 15;27(22):3827-3839. doi: 10.1093/hmg/ddy252.
5
Embryonic craniofacial bone volume and bone mineral density in Fgfr2(+/P253R) and nonmutant mice.
Dev Dyn. 2014 Apr;243(4):541-51. doi: 10.1002/dvdy.24095. Epub 2014 Feb 7.
6
The ras-GTPase activity of neurofibromin restrains ERK-dependent FGFR signaling during endochondral bone formation.
Hum Mol Genet. 2013 Aug 1;22(15):3048-62. doi: 10.1093/hmg/ddt162. Epub 2013 Apr 9.
7
From shape to cells: mouse models reveal mechanisms altering palate development in Apert syndrome.
Dis Model Mech. 2013 May;6(3):768-79. doi: 10.1242/dmm.010397. Epub 2013 Mar 8.
8
Postnatal brain and skull growth in an Apert syndrome mouse model.
Am J Med Genet A. 2013 Apr;161A(4):745-57. doi: 10.1002/ajmg.a.35805. Epub 2013 Mar 12.
9
Large-scale objective phenotyping of 3D facial morphology.
Hum Mutat. 2012 May;33(5):817-25. doi: 10.1002/humu.22054. Epub 2012 Mar 20.

本文引用的文献

1
Early onset of craniosynostosis in an Apert mouse model reveals critical features of this pathology.
Dev Biol. 2009 Apr 15;328(2):273-84. doi: 10.1016/j.ydbio.2009.01.026. Epub 2009 Jan 29.
2
FGF signals from the nasal pit are necessary for normal facial morphogenesis.
Dev Biol. 2008 Jun 15;318(2):289-302. doi: 10.1016/j.ydbio.2008.03.027. Epub 2008 Mar 28.
4
Craniofacial dysmorphism in Apert syndrome.
JBR-BTR. 2007 May-Jun;90(3):202-3.
5
Effects of aneuploidy on skull growth in a mouse model of Down syndrome.
J Anat. 2007 Apr;210(4):394-405. doi: 10.1111/j.1469-7580.2007.00705.x.
6
Abnormalities in cartilage and bone development in the Apert syndrome FGFR2(+/S252W) mouse.
Development. 2005 Aug;132(15):3537-48. doi: 10.1242/dev.01914. Epub 2005 Jun 23.
7
Halo distraction of the Le Fort III in syndromic craniosynostosis: a long-term assessment.
Plast Reconstr Surg. 2005 May;115(6):1524-36. doi: 10.1097/01.prs.0000160271.08827.15.
8
Computed tomography assessment of Apert syndrome.
Braz Oral Res. 2004 Jan-Mar;18(1):35-9. doi: 10.1590/s1806-83242004000100007. Epub 2004 Jul 20.
10
Craniofacial phenotypes in segmentally trisomic mouse models for Down syndrome.
Am J Med Genet. 2002 Feb 1;107(4):317-24. doi: 10.1002/ajmg.10175.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验