Suppr超能文献

用于未知原发部位癌分类的免疫组化和表达谱分析相结合的混合模型。

Hybrid model integrating immunohistochemistry and expression profiling for the classification of carcinomas of unknown primary site.

机构信息

Departments of Anatomic Pathology, H Lee Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612-9497, USA.

出版信息

J Mol Diagn. 2010 Jul;12(4):476-86. doi: 10.2353/jmoldx.2010.090197. Epub 2010 Jun 17.

Abstract

Identification of the site of origin for 'malignancy with unknown primary' remains a challenge for modern pathology. Correct diagnosis is critical to defining the most beneficial treatment for the patient. Standard pathological approaches combine morphology and immunohistochemical (IHC) studies to first subclassify cytokeratin-positive carcinomas into adenocarcinoma, squamous cell carcinoma, neuroendocrine carcinoma, and urothelial carcinoma. Subsequently, organ-specific IHC-markers, if available, are used to assign the tumor's primary site of origin. Previous gene expression classifiers have shown promise in tumor classification but cannot readily be integrated into standard practice because they ignore the algorithmic hierarchy used by pathologists. Here we present a novel hybrid approach integrating a hierarchy of gene expression classifiers into the algorithmic method used with IHC. In this method, a tumor is initially assigned to one of the carcinoma subclasses by the top tier classifier. Dependent on initial classification, one of three second-tier classifiers assign primary site resulting in both carcinoma subtype and primary site classification. First tier classifier accuracies were 89%, 88%, and 75% for cross-validation, independent, and institutional independent test sets, respectively. Second tier accuracies were 87%, 90%, and 87% for adenocarcinoma, squamous, and neuroendocrine carcinoma respectively. Therefore, we can successfully separate the four main subtypes of carcinoma and subsequently assign primary site by incorporation of gene expression-based classifiers into the standard algorithmic pathology approach.

摘要

对于现代病理学来说,确定“不明原发灶恶性肿瘤”的起源部位仍然是一个挑战。正确的诊断对于确定对患者最有益的治疗方案至关重要。标准的病理方法将形态学和免疫组织化学(IHC)研究相结合,首先将角蛋白阳性的癌细分为腺癌、鳞状细胞癌、神经内分泌癌和尿路上皮癌。随后,如果有可用的器官特异性 IHC 标志物,则用于确定肿瘤的原发部位。以前的基因表达分类器在肿瘤分类中显示出了一定的前景,但由于它们忽略了病理学家使用的算法层次结构,因此无法轻易地集成到标准实践中。在这里,我们提出了一种新颖的混合方法,将基因表达分类器的层次结构集成到与 IHC 一起使用的算法方法中。在这种方法中,肿瘤首先通过顶级分类器分配到一个癌亚类中。根据初始分类,三个二级分类器中的一个将原发部位分类,从而确定癌亚型和原发部位分类。在交叉验证、独立和机构独立测试集中,一级分类器的准确率分别为 89%、88%和 75%。二级分类器的准确率分别为 87%、90%和 87%,用于腺癌、鳞状细胞癌和神经内分泌癌。因此,我们可以通过将基于基因表达的分类器纳入标准算法病理学方法来成功地分离出四种主要的癌亚型,并随后分配原发部位。

相似文献

2
A 92-gene cancer classifier predicts the site of origin for neuroendocrine tumors.
Mod Pathol. 2014 Jan;27(1):44-54. doi: 10.1038/modpathol.2013.105. Epub 2013 Jul 12.
5
Molecular classification of cancers of unknown primary site.
Mol Diagn Ther. 2009 Dec 1;13(6):367-73. doi: 10.1007/BF03256342.
6
Efficient identification of miRNAs for classification of tumor origin.
J Mol Diagn. 2014 Jan;16(1):106-15. doi: 10.1016/j.jmoldx.2013.10.001. Epub 2013 Nov 5.
7
An integrated tool for determining the primary origin site of metastatic tumours.
J Clin Pathol. 2018 Jul;71(7):584-593. doi: 10.1136/jclinpath-2017-204887. Epub 2017 Dec 16.
8
Gene expression profiling in patients with carcinoma of unknown primary site: from translational research to standard of care.
Virchows Arch. 2014 Apr;464(4):393-402. doi: 10.1007/s00428-014-1545-2. Epub 2014 Feb 1.
9
Predicting the site of origin of tumors by a gene expression signature derived from normal tissues.
Oncogene. 2010 Aug 5;29(31):4485-92. doi: 10.1038/onc.2010.196. Epub 2010 May 31.
10
Molecular profiling diagnosis in unknown primary cancer: accuracy and ability to complement standard pathology.
J Natl Cancer Inst. 2013 Jun 5;105(11):782-90. doi: 10.1093/jnci/djt099. Epub 2013 May 2.

引用本文的文献

1
Molecular Genetics of Renal Cell Carcinoma: A Narrative Review Focused on Clinical Relevance.
Curr Oncol. 2025 Jun 18;32(6):359. doi: 10.3390/curroncol32060359.
2
p21 Protein Outperforms Clinico-pathological Criteria in Predicting Liver Metastases in Pancreatic Endocrine Tumors.
Cancer Genomics Proteomics. 2023 Nov-Dec;20(6):522-530. doi: 10.21873/cgp.20402.
3
Predicting Cancer Tissue-of-Origin by a Machine Learning Method Using DNA Somatic Mutation Data.
Front Genet. 2020 Jul 14;11:674. doi: 10.3389/fgene.2020.00674. eCollection 2020.
4
TOOme: A Novel Computational Framework to Infer Cancer Tissue-of-Origin by Integrating Both Gene Mutation and Expression.
Front Bioeng Biotechnol. 2020 May 19;8:394. doi: 10.3389/fbioe.2020.00394. eCollection 2020.
5
Progress in refining the clinical management of cancer of unknown primary in the molecular era.
Nat Rev Clin Oncol. 2020 Sep;17(9):541-554. doi: 10.1038/s41571-020-0359-1. Epub 2020 Apr 29.
6
[The role of pathology in the diagnostics of CUP syndrome].
Radiologe. 2014 Feb;54(2):124-33. doi: 10.1007/s00117-013-2546-x.
7
Immunohistochemical profile for unknown primary adenocarcinoma.
PLoS One. 2012;7(1):e31181. doi: 10.1371/journal.pone.0031181. Epub 2012 Jan 27.

本文引用的文献

1
Implementation of a novel microarray-based diagnostic test for cancer of unknown primary.
Int J Cancer. 2009 Sep 15;125(6):1390-7. doi: 10.1002/ijc.24504.
2
Multicenter validation of a 1,550-gene expression profile for identification of tumor tissue of origin.
J Clin Oncol. 2009 May 20;27(15):2503-8. doi: 10.1200/JCO.2008.17.9762. Epub 2009 Mar 30.
3
Desmocollin-3: a new marker of squamous differentiation in undifferentiated large-cell carcinoma of the lung.
Mod Pathol. 2009 May;22(5):709-17. doi: 10.1038/modpathol.2009.30. Epub 2009 Mar 13.
5
Tissue-specific RMA models to incrementally normalize Affymetrix GeneChip data.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:2419-22. doi: 10.1109/IEMBS.2008.4649687.
7
Expression of hepatocyte nuclear factor 4 alpha in primary ovarian mucinous tumors.
Pathol Int. 2008 Nov;58(11):681-6. doi: 10.1111/j.1440-1827.2008.02293.x.
8
Molecular profiling of carcinoma of unknown primary and correlation with clinical evaluation.
J Clin Oncol. 2008 Sep 20;26(27):4442-8. doi: 10.1200/JCO.2007.14.4378.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验