Suppr超能文献

用于未知原发部位癌分类的免疫组化和表达谱分析相结合的混合模型。

Hybrid model integrating immunohistochemistry and expression profiling for the classification of carcinomas of unknown primary site.

机构信息

Departments of Anatomic Pathology, H Lee Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL 33612-9497, USA.

出版信息

J Mol Diagn. 2010 Jul;12(4):476-86. doi: 10.2353/jmoldx.2010.090197. Epub 2010 Jun 17.

Abstract

Identification of the site of origin for 'malignancy with unknown primary' remains a challenge for modern pathology. Correct diagnosis is critical to defining the most beneficial treatment for the patient. Standard pathological approaches combine morphology and immunohistochemical (IHC) studies to first subclassify cytokeratin-positive carcinomas into adenocarcinoma, squamous cell carcinoma, neuroendocrine carcinoma, and urothelial carcinoma. Subsequently, organ-specific IHC-markers, if available, are used to assign the tumor's primary site of origin. Previous gene expression classifiers have shown promise in tumor classification but cannot readily be integrated into standard practice because they ignore the algorithmic hierarchy used by pathologists. Here we present a novel hybrid approach integrating a hierarchy of gene expression classifiers into the algorithmic method used with IHC. In this method, a tumor is initially assigned to one of the carcinoma subclasses by the top tier classifier. Dependent on initial classification, one of three second-tier classifiers assign primary site resulting in both carcinoma subtype and primary site classification. First tier classifier accuracies were 89%, 88%, and 75% for cross-validation, independent, and institutional independent test sets, respectively. Second tier accuracies were 87%, 90%, and 87% for adenocarcinoma, squamous, and neuroendocrine carcinoma respectively. Therefore, we can successfully separate the four main subtypes of carcinoma and subsequently assign primary site by incorporation of gene expression-based classifiers into the standard algorithmic pathology approach.

摘要

对于现代病理学来说,确定“不明原发灶恶性肿瘤”的起源部位仍然是一个挑战。正确的诊断对于确定对患者最有益的治疗方案至关重要。标准的病理方法将形态学和免疫组织化学(IHC)研究相结合,首先将角蛋白阳性的癌细分为腺癌、鳞状细胞癌、神经内分泌癌和尿路上皮癌。随后,如果有可用的器官特异性 IHC 标志物,则用于确定肿瘤的原发部位。以前的基因表达分类器在肿瘤分类中显示出了一定的前景,但由于它们忽略了病理学家使用的算法层次结构,因此无法轻易地集成到标准实践中。在这里,我们提出了一种新颖的混合方法,将基因表达分类器的层次结构集成到与 IHC 一起使用的算法方法中。在这种方法中,肿瘤首先通过顶级分类器分配到一个癌亚类中。根据初始分类,三个二级分类器中的一个将原发部位分类,从而确定癌亚型和原发部位分类。在交叉验证、独立和机构独立测试集中,一级分类器的准确率分别为 89%、88%和 75%。二级分类器的准确率分别为 87%、90%和 87%,用于腺癌、鳞状细胞癌和神经内分泌癌。因此,我们可以通过将基于基因表达的分类器纳入标准算法病理学方法来成功地分离出四种主要的癌亚型,并随后分配原发部位。

相似文献

5
Molecular classification of cancers of unknown primary site.原发不明癌症的分子分类。
Mol Diagn Ther. 2009 Dec 1;13(6):367-73. doi: 10.1007/BF03256342.
6
Efficient identification of miRNAs for classification of tumor origin.高效识别 microRNA 用于肿瘤来源分类。
J Mol Diagn. 2014 Jan;16(1):106-15. doi: 10.1016/j.jmoldx.2013.10.001. Epub 2013 Nov 5.

引用本文的文献

7
Immunohistochemical profile for unknown primary adenocarcinoma.未知原发性腺癌的免疫组织化学特征。
PLoS One. 2012;7(1):e31181. doi: 10.1371/journal.pone.0031181. Epub 2012 Jan 27.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验