Godde Ben, Diamond Mathew E, Braun Christoph
Jacobs Center on Lifelong Learning and Institutional Development, Jacobs University Bremen, P.O. Box 750561, D-28725 Bremen, Germany.
Neurosci Lett. 2010 Aug 16;480(2):143-7. doi: 10.1016/j.neulet.2010.06.027. Epub 2010 Jun 16.
Using functional MRI we examined the task-dependency of brain activation patterns evoked by vibrotactile stimulation. For this purpose, we measured activations after identical stimulation of the fingers of the right hand in three different task conditions: passive attention, localization of the vibrations, and discrimination of temporal noise within the vibrations. Further, we investigated whether, regardless of task demands, the characteristics of the vibrations - periodic versus noisy - had an effect on brain topography. Vibrotactile processing was associated with activation in a variety of cortical areas including contralateral primary somatosensory cortex (SI), bilateral posterior parietal cortex, parietal operculum (second somatosensory cortex, SII), insula, and superior temporal gyrus, as well as ipsilateral middle temporal gyrus, precentral, and middle frontal gyrus. However, identical stimuli evoked different brain activity patterns in different task conditions: significantly stronger activity in the hand representation of SI was found for stimulus localization than for noise detection. In contrast, significantly higher activation for noise detection than for finger localization was found in the thalamus. Activation tended to be lower for noisy stimuli in both hemispheres. Significant stimulus-related differences, however, could be found only in the contralateral postcentral and parietal cortex, particularly during noise discrimination. In summary, in response to vibrotactile stimulation, the level of activation in processing circuits ranging across thalamus and many cortical regions is dictated by the perceptual operation carried out on the vibration. We speculate that different nodes in the network carry signals that can be optimally decoded for either spatial or temporal information and that the degree of activation reflects those nodes' relative contributions to the decoding process.
我们使用功能磁共振成像技术研究了振动触觉刺激诱发的大脑激活模式的任务依赖性。为此,我们在三种不同的任务条件下测量了右手手指受到相同刺激后的激活情况:被动注意力、振动定位以及振动中时间噪声的辨别。此外,我们还研究了无论任务要求如何,振动的特征——周期性与噪声性——是否会对脑地形图产生影响。振动触觉处理与包括对侧初级体感皮层(SI)、双侧顶叶后皮质、顶叶岛盖(第二体感皮层,SII)、脑岛和颞上回,以及同侧颞中回、中央前回和额中回在内的多种皮质区域的激活有关。然而,相同的刺激在不同任务条件下诱发了不同的大脑活动模式:与噪声检测相比,在SI的手部表征区域,刺激定位时的活动明显更强。相比之下,在丘脑区域,噪声检测时的激活明显高于手指定位时的激活。在两个半球中,噪声性刺激的激活往往较低。然而,仅在对侧中央后回和顶叶皮质中发现了与刺激相关的显著差异,特别是在噪声辨别过程中。总之,对于振动触觉刺激,丘脑和许多皮质区域的处理回路中的激活水平取决于对振动执行的感知操作。我们推测,网络中的不同节点携带的信号可以针对空间或时间信息进行最佳解码,并且激活程度反映了这些节点对解码过程的相对贡献。