Suppr超能文献

不同加巴喷丁多晶型物在研磨和共研磨过程中的固态转变。

Solid-state transformation of different gabapentin polymorphs upon milling and co-milling.

机构信息

Lab. Pharm. Biopharm., Department of Biotechnology, Yuanpei University, No. 306, Yuanpei Street, Hsin Chu, Taiwan, ROC.

出版信息

Int J Pharm. 2010 Aug 30;396(1-2):83-90. doi: 10.1016/j.ijpharm.2010.06.014. Epub 2010 Jun 16.

Abstract

The purpose of this study was to investigate the milling effect on the polymorphic transformation of four gabapentin (GBP) Forms I-IV in the absence of additive. Four polymorphs of GBP were previously prepared and identified, in which the GBP Form I was proven to be a monohydrate, but other GBP Forms II-IV belonged to anhydrate. The GBP Form II was the most stable polymorph available in the market. The co-milling process affecting the polymorphic stability of GBP Form II with different additives was also examined. During the 120-min-milling or co-milling course, the milled sample was withdrawn at prescribed intervals for Fourier transform infrared (FTIR) microspectroscopic determination. In the absence of additive, each polymorph of GBP exhibits a different polymorphic transformation behavior in the 120-min-milling course. The results indicate that GBP Form I was previously dehydrated and transited to Form II; GBP Form II was first transformed to Form III and then changed to Form IV; GBP Form III was previously transited to Form II, then changed to Form III and transformed to Form IV at last; whereas GBP Form IV was first changed to Form II, then transited to Form III and finally to Form IV. It was clearly evidenced that if GBP Form III or IV appeared in the milled mixture a little amount of GBP-lactam was certainly detected. In the presence of additives, there was almost lack of polymorphic transition for GBP Form II by co-milling GBP Form II with Emcompress, beta-cyclodextrin, mannitol, corn starch or magnesium stearate. By co-milling GBP Form II with Avicel, dextrin, hydroxypropyl beta-cyclodextrin, hydroxypropyl methylcellulose, Kollidon K-30 or gelatin, GBP Form II was transformed to Form IV alone. On the other hand, the GBP Form IV and a little amount of GBP-lactam were also found in the co-milled mixture after co-milling with GBP Form II with Aerosil or talc. This reveals that the solid-state transformation of GBP Form II after co-milling was markedly dependent on the types of additive used.

摘要

本研究旨在探讨在无添加剂存在的情况下,四种加巴喷丁(GBP)形式 I-IV 的研磨效果。 先前已制备和鉴定了四种 GBP 多晶型物,其中 GBP 形式 I 被证明是一水合物,但其他 GBP 形式 II-IV 属于无水物。GBP 形式 II 是市场上最稳定的多晶型物。还研究了在不同添加剂存在下共研磨过程对 GBP 形式 II 多晶型稳定性的影响。在 120 分钟的研磨或共研磨过程中,每隔一定时间从研磨样品中取出样品,进行傅里叶变换红外(FTIR)微光谱测定。在无添加剂的情况下,GBP 的每种多晶型物在 120 分钟的研磨过程中表现出不同的多晶型转化行为。结果表明,GBP 形式 I 先前脱水并转化为形式 II;GBP 形式 II 首先转化为形式 III,然后转化为形式 IV;GBP 形式 III 先前转化为形式 II,然后转化为形式 III,最后转化为形式 IV;而 GBP 形式 IV 首先转化为形式 II,然后转化为形式 III,最后转化为形式 IV。显然,如果在研磨混合物中出现 GBP 形式 III 或 IV,则肯定会检测到少量的 GBP-内酰胺。在添加剂存在的情况下,通过将 GBP 形式 II 与 Emcompress、β-环糊精、甘露醇、玉米淀粉或硬脂酸镁共研磨,GBP 形式 II 的多晶型转变几乎不存在。通过将 GBP 形式 II 与 Avicel、糊精、羟丙基β-环糊精、羟丙基甲基纤维素、Kollidon K-30 或明胶共研磨,GBP 形式 II 单独转化为形式 IV。另一方面,在与 GBP 形式 II 与 Aerosil 或滑石共研磨后,也在共研磨混合物中发现了 GBP 形式 IV 和少量的 GBP-内酰胺。这表明 GBP 形式 II 共研磨后的固态转化明显取决于所用添加剂的类型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验