Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA.
Nat Nanotechnol. 2010 Jul;5(7):520-4. doi: 10.1038/nnano.2010.107. Epub 2010 Jun 20.
Tensegrity, or tensional integrity, is a property of a structure indicating a reliance on a balance between components that are either in pure compression or pure tension for stability. Tensegrity structures exhibit extremely high strength-to-weight ratios and great resilience, and are therefore widely used in engineering, robotics and architecture. Here, we report nanoscale, prestressed, three-dimensional tensegrity structures in which rigid bundles of DNA double helices resist compressive forces exerted by segments of single-stranded DNA that act as tension-bearing cables. Our DNA tensegrity structures can self-assemble against forces up to 14 pN, which is twice the stall force of powerful molecular motors such as kinesin or myosin. The forces generated by this molecular prestressing mechanism can be used to bend the DNA bundles or to actuate the entire structure through enzymatic cleavage at specific sites. In addition to being building blocks for nanostructures, tensile structural elements made of single-stranded DNA could be used to study molecular forces, cellular mechanotransduction and other fundamental biological processes.
张紧整体,或张紧整体性,是一种结构特性,表明其稳定性依赖于处于纯压缩或纯拉伸状态的组件之间的平衡。张紧整体结构表现出极高的强度重量比和很强的弹性,因此被广泛应用于工程、机器人和建筑领域。在这里,我们报告了纳米级、预应力的三维张紧整体结构,其中刚性的 DNA 双螺旋束抵抗由充当张紧索的单链 DNA 片段施加的压缩力。我们的 DNA 张紧整体结构可以在高达 14 pN 的力下自组装,这是动力蛋白或肌球蛋白等强大的分子马达的失速力的两倍。这种分子预紧机制产生的力可用于弯曲 DNA 束,或通过在特定位置的酶切来驱动整个结构。除了作为纳米结构的构建块之外,由单链 DNA 制成的拉伸结构元件可用于研究分子力、细胞机械转导和其他基本的生物学过程。