Suppr超能文献

张拉整体结构、细胞生物物理学与生命系统的力学

Tensegrity, cellular biophysics, and the mechanics of living systems.

作者信息

Ingber Donald E, Wang Ning, Stamenovic Dimitrije

出版信息

Rep Prog Phys. 2014 Apr;77(4):046603. doi: 10.1088/0034-4885/77/4/046603.

Abstract

The recent convergence between physics and biology has led many physicists to enter the fields of cell and developmental biology. One of the most exciting areas of interest has been the emerging field of mechanobiology that centers on how cells control their mechanical properties, and how physical forces regulate cellular biochemical responses, a process that is known as mechanotransduction. In this article, we review the central role that tensegrity (tensional integrity) architecture, which depends on tensile prestress for its mechanical stability, plays in biology. We describe how tensional prestress is a critical governor of cell mechanics and function, and how use of tensegrity by cells contributes to mechanotransduction. Theoretical tensegrity models are also described that predict both quantitative and qualitative behaviors of living cells, and these theoretical descriptions are placed in context of other physical models of the cell. In addition, we describe how tensegrity is used at multiple size scales in the hierarchy of life—from individual molecules to whole living organisms—to both stabilize three-dimensional form and to channel forces from the macroscale to the nanoscale, thereby facilitating mechanochemical conversion at the molecular level.

摘要

物理学与生物学最近的融合促使许多物理学家进入细胞与发育生物学领域。其中最令人兴奋的一个兴趣领域是新兴的力学生物学领域,该领域主要关注细胞如何控制其力学特性,以及物理力如何调节细胞生化反应,这一过程被称为机械转导。在本文中,我们回顾了以拉胀整体结构(tensional integrity)在生物学中所起的核心作用,这种结构依靠拉伸预应力来维持其机械稳定性。我们描述了拉伸预应力如何成为细胞力学和功能的关键调节因素,以及细胞对拉胀整体结构的利用如何促进机械转导。文中还介绍了理论拉胀整体模型,这些模型预测了活细胞的定量和定性行为,并将这些理论描述置于细胞的其他物理模型背景中。此外,我们描述了拉胀整体结构如何在生命层次结构中的多个大小尺度上被利用——从单个分子到整个生物体——以稳定三维形态,并将力从宏观尺度传递到纳米尺度,从而促进分子水平的机械化学转化。

相似文献

1
Tensegrity, cellular biophysics, and the mechanics of living systems.
Rep Prog Phys. 2014 Apr;77(4):046603. doi: 10.1088/0034-4885/77/4/046603.
2
Tensegrity-based mechanosensing from macro to micro.
Prog Biophys Mol Biol. 2008 Jun-Jul;97(2-3):163-79. doi: 10.1016/j.pbiomolbio.2008.02.005. Epub 2008 Feb 13.
3
Tensegrity and mechanotransduction.
J Bodyw Mov Ther. 2008 Jul;12(3):198-200. doi: 10.1016/j.jbmt.2008.04.038. Epub 2008 Jun 16.
4
Tensegrity and mechanoregulation: from skeleton to cytoskeleton.
Osteoarthritis Cartilage. 1999 Jan;7(1):81-94. doi: 10.1053/joca.1998.0164.
5
Tensegrity I. Cell structure and hierarchical systems biology.
J Cell Sci. 2003 Apr 1;116(Pt 7):1157-73. doi: 10.1242/jcs.00359.
7
Mechanical behavior in living cells consistent with the tensegrity model.
Proc Natl Acad Sci U S A. 2001 Jul 3;98(14):7765-70. doi: 10.1073/pnas.141199598.
9
High-frequency affine mechanics and nonaffine relaxation in a model cytoskeleton.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Apr;89(4):042711. doi: 10.1103/PhysRevE.89.042711. Epub 2014 Apr 21.
10
Nonequilibrium statistical mechanical models for cytoskeletal assembly: towards understanding tensegrity in cells.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Oct;72(4 Pt 1):041927. doi: 10.1103/PhysRevE.72.041927. Epub 2005 Oct 26.

引用本文的文献

1
Calcium Unified: Understanding How Calcium's Atomic Properties Impact Human Health.
Cells. 2025 Jul 11;14(14):1066. doi: 10.3390/cells14141066.
2
Tubulin Acetylation and the Cellular Mechanosensing and Stress Response.
Results Probl Cell Differ. 2025;75:141-162. doi: 10.1007/978-3-031-91459-1_5.
4
5
Hydrogels with prestressed tensegrity structures.
Nat Commun. 2025 Apr 16;16(1):3637. doi: 10.1038/s41467-025-58956-3.
7
Metareview: a survey of active matter reviews.
Eur Phys J E Soft Matter. 2025 Mar 4;48(3):12. doi: 10.1140/epje/s10189-024-00466-z.
9
Tension-sensitive HOX gene expression in fibroblasts for differential scar formation.
J Transl Med. 2025 Feb 10;23(1):168. doi: 10.1186/s12967-025-06191-1.
10
Shaping epithelial tissues by stem cell mechanics in development and cancer.
Nat Rev Mol Cell Biol. 2025 Jan 29. doi: 10.1038/s41580-024-00821-0.

本文引用的文献

1
Mechanobiology and developmental control.
Annu Rev Cell Dev Biol. 2013;29:27-61. doi: 10.1146/annurev-cellbio-101512-122340.
2
Biomechanical imaging of cell stiffness and prestress with subcellular resolution.
Biomech Model Mechanobiol. 2014 Jun;13(3):665-78. doi: 10.1007/s10237-013-0526-8.
3
Micron-scale coherence in interphase chromatin dynamics.
Proc Natl Acad Sci U S A. 2013 Sep 24;110(39):15555-60. doi: 10.1073/pnas.1220313110. Epub 2013 Sep 9.
4
Actin depolymerization under force is governed by lysine 113:glutamic acid 195-mediated catch-slip bonds.
Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):5022-7. doi: 10.1073/pnas.1218407110. Epub 2013 Mar 4.
5
Cadherin-based intercellular adhesions organize epithelial cell-matrix traction forces.
Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):842-7. doi: 10.1073/pnas.1217279110. Epub 2012 Dec 31.
8
Spatial segregation between cell-cell and cell-matrix adhesions.
Curr Opin Cell Biol. 2012 Oct;24(5):628-36. doi: 10.1016/j.ceb.2012.07.003. Epub 2012 Aug 9.
9
E-cadherin-dependent stimulation of traction force at focal adhesions via the Src and PI3K signaling pathways.
Biophys J. 2012 Jul 18;103(2):175-84. doi: 10.1016/j.bpj.2012.06.009. Epub 2012 Jul 17.
10
The influence of matrix integrity on stress-fiber remodeling in 3D.
Biomaterials. 2012 Oct;33(30):7508-18. doi: 10.1016/j.biomaterials.2012.06.103. Epub 2012 Jul 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验