Suppr超能文献

Role of calcium in the regulation of theca cell androstenedione production in the domestic hen.

作者信息

Levorse J M, Tilly J L, Johnson A L

机构信息

Department of Animal Sciences, Rutgers, State University of New Jersey, New Brunswick 08903.

出版信息

J Reprod Fertil. 1991 May;92(1):159-67. doi: 10.1530/jrf.0.0920159.

Abstract

Theca cells were collected from the second largest preovulatory follicle. Chelation of extracellular calcium with EGTA attenuated LH (10 ng)-induced androstenedione production by theca cells, and this effect was more pronounced in calcium-deficient than in calcium-replete incubation medium. Incubation of theca cells with steroidogenic agonists in the presence of the calcium channel blocker verapamil (100 microM) suppressed androstenedione production stimulated by LH (a 57% decrease), the adenylate cyclase activator forskolin (a 59% decrease) and the cyclic adenosine monophosphate (cAMP) analog 8-bromo-cAMP (a 61% decrease). Furthermore, 3,4,5-trimethoxybenzoic acid 8-(diethylamino)octyl ester (TMB-8), a putative inhibitor of intracellular calcium mobilization, suppressed LH-induced androstenedione production in a dose-dependent fashion. The calmodulin inhibitors trifluoperazine (100 microM) and R24571 (50 microM) inhibited androstenedione production stimulated by hormonal (LH) and non-hormonal (forskolin, 8-bromo-cAMP) agonists (decreases ranging from 76 to 98%). While increasing the intracellular calcium ion concentrations with the calcium ionophore A23187 did not affect basal concentrations of androstenedione, treatment of LH-stimulated cells with the ionophore caused dose-dependent inhibition of androstenedione production; these effects were enhanced by coincubation with phorbol 12-myristate 13-acetate (a known activator of protein kinase C). We conclude that the mobilization of calcium is critical for agonist-stimulated steroidogenesis in hen theca cells, apparently requiring the interaction of calcium with its binding protein, calmodulin. Furthermore, increased cytosolic calcium concentrations may be involved in the suppression of androstenedione production, possibly as a result of an interaction with protein kinase C.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验